

Semantic Service Provisioning

Dominik Kuropka • Peter Tröger •
Steffen Staab • Mathias Weske
Editors

Semantic
Service
Provisioning

Editors
Dominik Kuropka Steffen Staab
alfabet AG University of Koblenz
Leibnitzstr. 53 Institute for Computer Science
10629 Berlin Universitaetsstr. 1
Germany 56016 Koblenz
dominik@kuropka.net Germany

staab@uni-koblenz.de

Peter Tröger Mathias Weske
Blekinge Institute of Technology Universität Potsdam
Department of Systems and HPI - Hasso Plattner Institute
Software Engineering (APS) Prof.-Dr.-Helmert-Str. 2-3
PO Box 520 14482 Potsdam
37225 Ronneby Germany
Sweden mathias.weske@hpi.uni-potsdam.de
peter.troger@bth.se

ISBN 978-3-540-78616-0 e-ISBN 978-3-540-78617-7

DOI 10.1007/978-3-540-78617-7

Library of Congress Control Number: 2008922187

ACM Classification: D.2.11, D.2.12, H.4, J.1

c© 2008 Springer Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Information systems play an increasingly important role for the realisation of prod-
ucts that companies provide to the market. Typically, the functionality of several het-
erogeneous information systems needs to be combined to realise a particular product.
Therefore, the seamless integration of information systems plays a key role in the de-
velopment and maintenance of products. In today’s dynamic market environments,
change is the rule rather than the exception. Consequently, the ability to change prod-
ucts in an effective way and to adapt products to a changing information technology
landscape, are important competitive advantages of a successful company.

Service oriented architectures are regarded as the main technology to provide
well specified business functionality realised by information systems. Services allow
effective re-use of existing functionality. The vision is to capture business relevant
functionality of existing software systems as services and use service composition to
plug services to larger, composite applications or products. Unfortunately, this vision
has yet to be achieved. Today it is generally accepted that syntactic specifications of
services are not sufficient to provide the high degree of flexibility for finding and
composing services in an efficient manner.

Therefore research activities have been conducted in this context to investigate
how the need for flexibility can be met by service oriented architectures in practical
applications. One example for such kind of research activities is the European inte-
gration project Adaptive Services Grid (ASG) with 21 partners from academia and
industry. From 2004 to 2007, the project developed a prototype of an automated ser-
vice composition and enactment platform for semantically described services. The
ASG approach for semantic service provisioning is blueprint to implement agility
and adaptiveness promised by service oriented architectures.

This book presents the consolidated research results from the ASG project and
other ongoing research activities. Rather then focusing only on technology and im-
plementation details, the book aims at presenting the core concepts and illustrating

vi Preface

their application with concrete examples. This book is well suited for researchers
and practitioner who want to catch the idea and get a concrete overview on seman-
tic service provisioning concepts. References to more detailed literature on particular
research aspects and implementation standards are given in this book, where applica-
ble.

ASG C-D Dissemination
Arbeitsgemeinschaft tranSIT GmbH Ilmenau
TCC Medienwerkstatt Zella-Mehlis

Holger Krause

Contents

Preface . v

List of Contributors . ix

1 Introduction
Mathias Weske . 1

2 Core Concepts and Use Case Scenario
Dominik Kuropka, Guido Laures and Peter Tröger . 5

3 Ontologies and Matchmaking
Emilia Cimpian, Harald Meyer, Dumitru Roman, Adina Sirbu,
Nathalie Steinmetz, Steffen Staab and Ioan Toma . 19

4 Service Enabling
Steffi Donath, Thomas Hering and Christoph Ringelstein 55

5 Service Composition and Binding
Marek Kowalkiewicz, Andre Ludwig, Harald Meyer, Jan Schaffner,
Christian Stamber and Sebastian Stein . 73

6 Service Composition Enactment
Marek Kowalkiewicz, Mariusz Momotko and Alexander Saar 145

7 Service Infrastructure
Andreas Polze and Peter Tröger . 163

8 Service Engineering Methodology
Joachim Bayer, Michael Eisenbarth, Theresa Lehner and Kai Petersen 185

9 Application and Outlook
Dominik Kuropka, Harald Meyer, Peter Tröger and Mathias Weske 203

References . 211

Index . 223

List of Contributors

Joachim Bayer
Hessische Zentrale für
Datenverarbeitung
Mainzer Strasse 29
65185 Wiesbaden
Germany
joachim.bayer@
joachimbayer.de

Emilia Cimpian
STI/University of Innsbruck
Technikerstr. 21a
6020 Innsbruck
Austria
emilia.cimpian@sti2.at

Steffi Donath
University of Leipzig
Marschnerstr. 31
04109 Leipzig
Germany
sdonath@wifa.uni-leipzig.de

Michael Eisenbarth
Fraunhofer Institute for Experimental
Software Engineering
Sauerwiesen 6
67661 Kaiserslautern
Germany
michael.eisenbarth@
iese.fraunhofer.de

Thomas Hering
University of Leipzig
Marschnerstr. 31
04109 Leipzig
Germany
hering@wifa.uni-leipzig.de

Marek Kowalkiewicz
SAP Research
Level 12, 133 Mary Street
Brisbane, QLD 4000
Australia
marek.kowalkiewicz@sap.com

Dominik Kuropka
alfabet meta-modeling AG
Leibnitzstr. 53
10629 Berlin
Germany
dominik@kuropka.net

Guido Laures
Software AG
Uhlandstr. 12
64297 Darmstadt
Germany
guido.laures@softwareag.com

x List of Contributors

Theresa Lehner
Fraunhofer Institute for Experimental
Software Engineering
Sauerwiesen 6
67661 Kaiserslautern
Germany
theresa.lehner@
iese.fraunhofer.de

Andre Ludwig
University of Leipzig
Marschnerstr. 31
04109 Leipzig
Germany
ludwig@wifa.uni-leipzig.de

Harald Meyer
Hasso Plattner Institute
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam
Germany
harald.meyer@
hpi.uni-potsdam.de

Mariusz Momotko
Rodan Systems S.A.
465 Puławska Street
02-844 Warszawa
Poland
Mariusz.Momotko@rodan.pl

Kai Petersen
Blekinge Institute of Technology
Fridhemsvägen 21
372 38 Ronneby
Sweden
kai.petersen@bth.se

Andreas Polze
Hasso Plattner Institute
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam
Germany
andreas@polze.de

Christoph Ringelstein
University Koblenz-Landau
Institute for Computer Science
56016 Koblenz
Germany
cringel@uni-koblenz.de

Dumitru Roman
STI/University of Innsbruck
Technikerstr. 21a
6020 Innsbruck
Austria
dumitru.roman@sti2.at

Alexander Saar
Day Software AG
Barfüsser Platz 6
4001 Basel
Schweiz
alexander.saar@day.com

Jan Schaffner
Hasso Plattner Institute
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam
Germany
Jan.Schaffner@hpi.uni-
potsdam.de

Adina Sirbu
STI/University of Innsbruck
Technikerstr. 21a
6020 Innsbruck
Austria
adina.sirbu@sti2.at

Steffen Staab
University Koblenz-Landau
Institute for Computer Science
56016 Koblenz
Germany
staab@uni-koblenz.de

List of Contributors xi

Christian Stamber
IDS Scheer AG
Altenkesseler Str. 17
66115 Saarbrücken
Germany
christian.stamber@ids-
scheer.com

Sebastian Stein
IDS Scheer AG
Altenkesseler Str. 17
66115 Saarbrücken
Germany
sebastian.stein@
ids-scheer.com

Nathalie Steinmetz
STI/University of Innsbruck
Technikerstr. 21a
6020 Innsbruck
Austria
nathalie.steinmetz@sti2.at

Ioan Toma
STI/University of Innsbruck
Technikerstr. 21a
6020 Innsbruck
Austria
ioan.toma@sti2.at

Peter Tröger
Blekinge Institute of Technology
Fridhemsvägen 21
372 38 Ronneby
Sweden
peter@troeger.eu

Mathias Weske
Hasso Plattner Institute
University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam
Germany
mathias.weske@
hpi.uni-potsdam.de

1

Introduction

Mathias Weske

1.1 State-of-the-art and Motivation

While service oriented computing has recently gained extensive momentum in both
industry and academia, reality lags far behind expectations. Major software vendors
hook on the service paradigm and tailor their software systems towards services, but
a thorough and consistent design of applications based on loosely coupled services
has yet to be achieved.

From its beginning, standardisation has been an important factor in service com-
puting. However, rather than being integrated, standardisation efforts are rather inde-
pendent from each other, so that the complex interplay between the various aspects
in service computing is not accounted for by standardisation efforts.

While there are service based software applications in place, they realise just
a minimal potential of service oriented computing, for instance standardised data
and message formats. While Burbeck [37] has already identified dynamic bind-
ing of services at runtime as a core functionality of service based environments
in 2000, dynamic binding of services has yet to be achieved. The main reason is
the lack of rich service specifications, concepts, and tools to process them. The
limitations of state-of-the-art service oriented systems can be characterised as fol-
lows:

• Static Discovery and Binding: Static binding of services means that an appli-
cation invokes a service during execution time. The service is hard wired to the
application, so that when the service fails, the application will also fail, unless ad-
ditional measures are taken. Static binding of services can be realised by syntactic
service specifications during the development of service based applications.
These services are discovered manually by browsing and searching facilities, typ-
ically provided by a dedicated software component, called service registry. Ser-
vices are then hard-wired to the application, which effectively realises a strong
coupling, which contradicts the intended service paradigm of loose coupling.

2 M. Weske

The main reason for this limitation is the lack of rich specifications of services
as well as proper domain ontologies that would facilitate dynamic service dis-
covery and binding. Service description languages like Web Services Description
Language (WSDL) [44] can only specify the technical syntactic interface of a ser-
vice. Thus, what the service actually does, the semantics of the service, remains
unspecified.

• Fixed Service Landscape: Static service binding restricts service based applica-
tions to a fixed service landscape. This means that new and improved services
that become available after the application was developed but before the ap-
plication is executed, cannot be used without modifying the application. This
is a severe limitation, because adapting existing applications to use new ser-
vices requires changing the application code and, thus, incurs considerable over-
head.

• Static Service Composition: To fulfil particular goals, multiple services need to be
performed according to underlying execution constraints. These execution con-
straints are specified in service compositions. Static service composition charac-
terises the composition of existing services as a manual task. The service based
application is more flexible and can adapt to changing service landscape with
reduced effort, if services are composed dynamically, based on rich semantic
specifications.

• Poor Service Level Agreement Specification: The service based application needs
to define non-functional parameters for externally invoked services, for instance,
related to response time or cost of using the services. As a result, service plat-
forms need to be aware of non-functional quality of service parameters. Cur-
rently available platforms do not have these required capabilities. There is also
no established interoperable specification language for defining, agreeing on, and
monitoring such contracts between the consumer and provider of services.

This book introduces advanced concepts in service provisioning and service engi-
neering, including semantic concepts, dynamic discovery and composition, and il-
lustrates them in a concrete business use case scenario. To prove the validity of the
concepts and technologies, a semantic service provisioning reference architecture
framework as well as a prototypical implementation of its subsystems and a proto-
typical realisation of a proper business scenario are presented. The book goes way
beyond current service based software technologies by providing a coherent and con-
sistent set of technologies and systems functionality that realises advanced concepts
in service provisioning.

In particular, the following advanced topics are addressed in this book. These are
features on the technological level, which are appointed by the application of a com-
pliant platform for service provisioning. On a business level, these achievements lead
to a reduction of costs in development and maintenance. Furthermore the semantic
service provisioning platform supports continuous adaptation of service centric ap-
plications towards environmental changes and upcoming business needs.

• Seamless integration of heterogeneous existing services: Service integration is
achieved by the provision of an elaborated methodological approach embedded

1 Introduction 3

into a set of integrated tools. These tools assist the user in her task of integrating
existing heterogeneous services into the platform. Starting point for integration
is a domain-specific ontology from which a specific type system is derived. The
semantic service provisioning platform supports the mapping to this specific type
system. Integrated services are augmented with semantic descriptions regarding
service functionality and non-functional properties. In terms of the business di-
mension, this achievement reduces the maintenance and modification costs for
large numbers of available services. It has the potential to ease integration of ser-
vices and data formats. The envisaged architecture allows an easy discovery and
interoperability of integrated services.

• On-demand creation of service compositions: Automated semantic-enabled ser-
vice composition allows creation of new services by composing existing services
on-demand and at run-time for individual user requests. For this purpose, the
semantically described functionality of services is used. Current service integra-
tion approaches base on manual programming, making it hard to cost-effectively
maintain and modify the complex service world. Therefore, the interface to ser-
vices is lifted from a manual to a logical level, and supports service composition
based on automated tools. The adaptive service composition implies a cost re-
duction in service provisioning.

• Reliable service provision with assured quality of service: The semantic service
provisioning platform supports the description, negotiation, and realisation of
non-functional service quality parameters. In cases of service failures or viola-
tions of agreed quality parameters, the platform reacts adaptively through re-
enactment, re-binding or re-composition activities. The future service world will
be based on global and dynamic services, which can be composed to answer the
needs of complex service requests. Dynamic service re-enactment, re-binding or
re-composition provide alternative solutions for non-reliable services, thus pro-
vides the end-customer with a reliable service delivery.

1.2 Scope and Organisation

This book introduces concepts and technologies in semantic service engineering and
provisioning. A use case scenario illustrates the concepts and shows the validity of
the technologies used. The organisation of this book follows roughly the lifecycle of
a service based application, from the specification of concepts and services to service
integration, composition, and finally enactment.

Chapter 2 introduces the foundation of this book by providing common termi-
nology and a use case scenario that is used throughout the book. Finally, the phases
involved in service provisioning are discussed.

Chapter 3 introduces semantic concepts in service engineering based on ontolo-
gies. In particular, ontology languages are introduced to capture the main concepts
and their relationships. These ontology languages are used to express domain ontolo-
gies and service ontologies. Domain ontologies represent the semantic concepts of
the particular domain of a service based application, while service ontologies define

4 M. Weske

how services are specified. A section on matchmaking explains how semantic speci-
fications of services and domain ontologies can be used to generate new knowledge
in service engineering, for instance, to decide which service actually fulfils the needs
of a given service specification.

Service enabling is studied in Chap. 4. At a technological level, the generation of
code for legacy integration is essential to service enabling, because it allows efficient
legacy integration. Concepts and technologies in software generation are used to
develop wrappers to existing software that realise the integration of services. Based
on the specification of domain ontologies, the semantic specification of services is
introduced.

One of the most important concepts in service provisioning is the composition of
services to value-added service compositions. Chapter 5 looks at various techniques
to compose services, ranging from manual composition to assisted composition and,
finally, to runtime composition. To provide a broad perspective on research work
in this area, Chap. 5 completes with a section on service composition and binding
as developed in the Integrated Project SUPER, supported by the EU in the Sixth
Framework Programme.

The enactment of service compositions is addressed in Chap. 6. Based on a set
of enactment strategies, service monitoring and service profiling is addressed. The
chapter completes with technologies to handle faults, based on the rich specification
of services.

The service infrastructure is presented in Chap. 7, starting with middleware con-
cepts and technologies, and proceeding to Web services technologies and a discus-
sion of the service infrastructure for semantic service provisioning.

A service engineering methodology is introduced in Chap. 8. This methodology
explains in detail the steps involved in the conceptual design and technological de-
velopment of service based applications using the approach presented in this book.

While the introduced use case scenario is used to illustrate the concepts and so-
lutions in the chapters, a consistent and sufficiently complete discussion of the reali-
sation of this scenario is provided in Chap. 9.

2

Core Concepts and Use Case Scenario

Dominik Kuropka, Guido Laures, and Peter Tröger

2.1 Terminology

This chapter starts the discussion on semantic service provision by establishing a
common terminology. Furthermore, we are introducing a non-trivial use case sce-
nario, which acts as a base for the following explanations in the book. Based on both
the terminology and the use case, this chapter defines the semantic service provision
lifecycle based on the introduced core building blocks.

2.1.1 What is the Service?

The term service is widely adopted by the business and the software engineering
community. However, both communities have a different understanding about what
services are. This is usually a source for many misunderstandings in practice.

A service oriented architecture (SOA) [37] describes the architectural concept to
organise applications and infrastructures in a business environment. Gartner defines
a SOA as a technical software infrastructure which enables an interaction between
service provider and service requester based on interface descriptions [139]. The
granularity of a service corresponds to the granularity of the provided business func-
tion. The Organization for the Advancement of Structured Information Standards
(OASIS) reference model defines SOA as a paradigm for the organisation and usage
of distributed business capabilities [123]. Melzer et al. define SOA as the abstract
concept of a software architecture which focuses on the provision, discovery and
usage of services over a network [64].

Three participant roles are the crucial aspect in service oriented business: The
service provider, the service broker, and the service requester respectively service
consumer (see also Fig. 2.1).

Both terms, requester and consumer, are used to the same amount in SOA liter-
ature and standards. Therefore, both terms are used also in this book by the differ-
ent authors. The SOA reference model only sticks with the service consumer term,

6 D. Kuropka et al.

Fig. 2.1. Service oriented architecture

while other sources reason the usage of service requester with the missing exhaus-
tion resources, which is typical in an consumption activity. Service requesters are
sometimes also wrongly named as service clients, customers, or requestors.

The service requester utilizes the service through its service interface. A service
may have several different technical interfaces. These interfaces are exposed by the
service provider to give the requester access to the functionality encapsulated by the
service. To properly access a service, a requester has to do specific technical things in
a specific order, like sending a well structured message to a proper computer which is
aligned to a predefined data format. Therefore the service providers have to publish
a service specification to enable access to their services.

The service broker has the role of yellow pages, it acts as a repository for service
specifications. Service providers publish their service specifications in the reposi-
tory. In addition, service broker offer searching and matching tools to facilitate ef-
ficient finding of services. Common technologies to implement a service repository
are Repository for Universal Description, Discovery and Integration (UDDI) [148],
ebXML [60] and LDAP [39]. They allow a standardised storage of service specifica-
tions, natural language descriptions of the services and a semi-formal classification
of the services.

In some cases, research publications also refer to the term service oriented com-
puting (SOC). The SOC approach is meanwhile widely accepted as a cross-disciplin-
ary paradigm for distributed computing, where services act as basic building blocks
for computational applications [92, 151]. Here, a service is a well-specified unit of
computational work, which is again offered by a service provider. This work might
be in the simplest case just the addition of two numbers; more sophisticated services
offer functionalities like charging of credit cards or the initiation of a human activity
for example the transportation of physical goods.

At this point, the difference between the service term in the business and the
software engineering community comes to the fore. In the business community, the
whole process of acquiring delivery information, physical transportation of goods
and the final delivery and payment are usually seen as one (transportation) service.
In SOC such an interpretation is not valid, since services have to be computational
work. The physical transportation of goods as a whole therefore cannot be a ser-
vice, since it can not be delivered by pure computational work. But the collection
of delivery information can be a service, as long as computer based interfaces are

2 Core Concepts and Use Case Scenario 7

used. The same holds for the charging, as long as it includes some computational
work like the charging of a credit card. In sum, services in SOC can only represent
the computational subset or parts of real-world services in the sense of the business
community. SOC could therefore be ranked as substantial part of the SOA research
and paradigms.

The general crucial point of SOA approaches is the intended support of a late
and dynamic service binding. The service requester should not need to bind itself
at design-time to only one of the service provider. Instead, the service requester can
query the broker for the most suitable services during execution time.

In theory, the resulting business competition encourages a continuous improve-
ment of the offered services. In practice, most attempts to realise such a dynamic
binding showed technical obstacles. A major challenge in finding the proper ser-
vice is the derivation of service functionality from a pure syntactical specification.
These descriptions only contain information about input and output data formats,
but not about the service functionality and the meaning of the data structures. This
is usually not a big issue with a manual integration of services at the design time
of the requester application. In this case, the programmer can read additional nat-
ural language documentation or directly contact the service provider representa-
tives. However it becomes a major obstacle with automated late binding of ser-
vices.

A solution for this challenge is the concept of a semantic service, which is the
main topic of this book. The idea behind semantic services is to extend the syntacti-
cal specification of a service by a semantic specification. This semantic specification
formally describes the functionality and the meaning of the data used by the ser-
vice interface. Formats and languages for a semantic specification of services are
presented in Sect. 3.4, while techniques to specify existing services and to ensure a
proper data integration (service grounding) are discussed in Sect. 4.3.

Another aspect also discussed in this book is the composition of services. A ser-
vice composition is a partially ordered set of services in the sense of a workflow
or business process [204]. It could also be understood as service based application.
Today, service compositions have to be created manually which is a laborious and
thus expensive task. Referring to this point semantic services also provide a benefit.
With semantic services the costs for the composition of services can be reduced if
assisted or automated service composition approaches are used. This topic will be
discussed in detail in Chap. 5. Since service compositions offer their functionality
also through a service interface, we distinguish here between a atomic service and a
composed service (often also called composite service). The latter one represents the
combination of different atomic services in a workflow, which itself is usable over a
service interface.

For the implementation of SOA environments, many different technologies are
provided by industry vendors. Web service technologies like SOAP and Web Ser-
vices Description Language (WSDL) are the usual, but not the only promising tech-
nology to implement the SOA concepts. Chapter 7 discusses their technical de-
tails.

8 D. Kuropka et al.

2.1.2 Service Quality

The consideration of the quality of service provisioning usually focuses on two cat-
egories of metrics: performance metrics and dependability metrics. While performa-
bility is naturally specific for the according middleware area (e.g. computational
clusters vs. business service environments), dependability has a mature terminology
from the history of distributed systems [16]. We therefore re-use some basic terms
for dependability in our understanding of service oriented systems. Other service
quality aspects beside dependability are discussed specifically in Sect. 6.3.

First, we define a correct service to deliver a functionality according to its spec-
ification, in contrast to an incorrect service, which misbehaves in comparison to its
specification. A service failure is the event in time, when the delivered service func-
tionality deviates from its specified functionality. All failures have failure symptoms,
which might or might not be observable. This demands some understanding of a
correct service behaviour, and the possibility for monitoring and rating the service
behaviour to detect a failure symptom. With the existence of a service failure, the
underlying system has some kind of error state. The cause of this error state in the
system is called a fault.

An incorrect service shows up by a failure in the service functionality or its in-
terface. It is caused by a system error state, which itself results from a (maybe non-
observable) causing fault. It has to be noted that a service can either be a single
atomic service or a composed service, consisting of several other services. The de-
pendability concepts remain the same for both types of services.

Since the overall goal of a dependable (service oriented) system is an integrated
concept [116], it consists of several sub-topics based on the above terminology. The
alternation of correct and incorrect service functionality in time is used for some of
the sub-concepts to describe according metrics:

• availability: The readiness of a system to provide a correct service. An according
measure is the relationship between correct and incorrect service functionality
over time.

• reliability: The continuity of a correct service provisioning in all cases. An ac-
cording measure is the time to failure.

• safety: The absence of an catastrophic consequence on the user and the envi-
ronment. As a special case, it expresses the reliability according to catastrophic
failures.

• confidentiality: The absence of unauthorised information disclosure.
• integrity: The absence of improper state alteration.
• maintainability: Ability to undergo repairs and modifications. A measure is the

time to restoration of the correct service after a detected failure.

Dependable system research is aware of many other dependability concepts and
terms, some of them are used inflationary in the SOA research. A popular exam-
ple is the notion of security as quality metric, which expresses the intend to avoid
unauthorised access to service functionality. In terms of the generic dependability
concepts, security represents a combination of availability for authorised users only,

2 Core Concepts and Use Case Scenario 9

confidentiality regarding unauthorised users, and integrity in terms of unauthorised
usage. There are four major technologies for achieving dependable service function-
ality:

• fault prevention prevents the introduction or occurrence of faults.
• fault tolerance delivers a correct service even in the presence of faults, by com-

bining error detection with system recovery.
• fault removal reduces the number or severity of faults.
• fault forecasting estimates the present or future number of faults, and their inci-

dence.

system recovery denotes the movement from a faulty system state to a correct sys-
tem state. The recovery from faults can be performed by error handling (roll-back,
compensation, roll-forward) or fault handling (diagnosis, isolation, reconfiguration,
re-initalization).

In SOA environments, dependability approaches usually concentrate on service
compositions as unit of dependability. The system term here can be mapped to the
different atomic services forming the composition. For fault tolerance, error handling
works on the system (= service composition) state during runtime, while the fault
handling concentrates on identifying and isolating a faulty atomic service.

In this book, we will see both error handling approaches: fault handling for ser-
vice compositions, as well as fault handling strategies for atomic services. Fault re-
moval is accompanied by manual tasks during development time (verification, vali-
dation, fault injection) or runtime (corrective maintenance, preventive maintenance),
and will therefore not be in focus in this book. Also fault prevention is mainly at-
tained during development time. Fault forecasting maps to the concept of service
profiling, where the analysis of historical service behaviour is used to compute and
consider dependability measures for a service.

2.1.3 Service-Level Agreements

The term of a Service Level Agreement (SLA) originates from an industrial context.
It is frequently (mis-)used by research and industry people in SOA discussions and
publications. Different communities, such as networking, multimedia, grid comput-
ing, or agent technology people, use the SLA-term in their own environment in dif-
ferent manners.

In networking environments, data centres and independent software vendors have
several standards and technologies to deal with performance objectives for network
connections [142], such as data rate, packet delay, latency, error rate, or network up-
time. The multimedia community defined quality models for adaptive multichannel
information systems, which are implemented by resource partitioning techniques.
The Grid computing community sees SLA simply as formulation of resource re-
quirements [12], while the agent community sees SLA as subject of negotiation be-
tween different software agents, in order to support full-automated agreement cre-
ation.

10 D. Kuropka et al.

Due to this widespread, but unspecified application of SLA terminology, we try
to give here common base for the SLA discussions in this book. An agreement in
general can be seen as the concordant declaration of some intention. It includes at
least some kind of statement about the agreement, and the exchange of contractual
documents. In real world, these contractual agreements can regulate purchases, leas-
ing activities, a permanent work relationship—or some kind of service.

When we interpret SOA as the mapping of business environments and conditions
to the world of software, service-level agreements define the conditions under which
a business service is provided to a consumer. This can relate to performance, cost,
reliability, security, or other issues relevant for the service consumer. Obligations
and provided functionalities are defined for both partners, but also penalties if the
negotiated properties are not fulfilled [120].

The service requester has specific requirements and expectations on the service.
The level of fulfilment for these requirements relates to the costs of the service—
cheaper services have a lower level of expectable service quality metrics. The ser-
vice provider has the task of fulfilling all negotiated contracts, while maximising the
utilisation of the resources and minimising the costs for contract penalties. Typical
service-level agreements contain quality guarantees in different granularity levels,
which potentially have a stochastic definition:

The maximum response time for 95 percent of the requests should be below
2 seconds.

Technical properties of such a specification are usually named as service-level spec-
ification or service-level objective. The promised behaviour is formulated as logi-
cal expression, which is checked through measured values during runtime. Beside
these technical aspects, also organisational requirements (e.g. violation notification)
or commercial aspects (e.g. price for SLA violation) can be a part of a SLA defini-
tion.

2.2 Use Case Scenario

This section introduces a use case common to all chapters of this book. Concepts and
technologies for semantic service provision will be illustrated by referring to this use
case. It is settled in the hosting services industry. However, it is important to keep
in mind that this is just one specific example. Semantic service provision and the
concepts described in this book are independent from industrial domains.

2.2.1 Introduction

The use case presented in this section bases on the business-to-business (B2B) whole-
sale model of an Austrian Internet Service Provider (ISP) called Hostit. It spe-
cialises on products like domain registration, web hosting solutions and messaging
services, but not on providing the Internet access itself.

2 Core Concepts and Use Case Scenario 11

Fig. 2.2. The available B2C solution

Let us consider the Hostit business-to-consumer (B2C) hosting product shop
solution shown in Fig. 2.2. Joanna, an Hungarian woman, wants to become a Hos-
tit customer. She uses her browser to access the Hostit web shop and order
the hosting solution she desires. She is interested in registering her own domain
(joanna.hu) with e-mail addresses and web space. She wants to use her credit
card to pay for the products. Using the Hostit web shop she is able to specify all
configuration items needed for the order processing like the intended domain name,
the payment method, and so on. To process an order the Hostit web shop applica-
tion accesses the needed company-internal services as well as services from external
partners. The service selection highly depends on the order configuration, respec-
tively the service invocation order is determined by Hostit’s business processes.

To process Joanna’s order Hostit has to make use of external partner services
for domain registration, operating and maintaining of Domain Name Server (DNS)
information, web hosting configuration, and payment. Which services to use highly
depends on the customer’s demands. For instance, the service used for domain regis-
tration depends on the customer’s desired top-level domain. Assignment of domains
with .com or .org endings are governed by Internet Corporation for Assigned
Names and Numbers (ICANN) while for example national domains like .de or .at
are assigned by Deutsches Network Information Center (DENIC) in Germany or
nic.at in Austria. In Joanna’s case, the domain registration service to use is Net-
work Information Centre (NIC) Hungary. Internet service providers accredited by
the supervising registrars can register domains by using dedicated interfaces of the
registrars domain database. Web hosting services of internet providers encapsulate
interfaces for web hosting systems. They allow allocation of web space to users while
enforcing fine-grained restrictions on data volume, traffic and e-mail configuration.

Hostit is interested in expanding into the German market. Thus, its cooper-
ates with a German newspaper named Heidelberger Zeitung. This company
wants to bundle a newspaper subscription with a web hosting and e-mail prod-
uct. The idea is that subscribers automatically get their own e-mail address and
domain for a one year subscription as a free add-on. To enable Heidelberger

12 D. Kuropka et al.

Fig. 2.3. Extension for B2B scenarios

Zeitung to order Hostit products without having to manually order them us-
ing the web client, Hostit expands its existing end-customer-centric application
to a more flexible platform that can be used through various front-end solutions
operated by resellers. The goal is to develop a B2B solution that reuses already
available elementary business capabilities. This service reuse reduces customer ac-
quisition and support costs for Hostit. The underlying internet service provision
system requires extensions to support a more generalised B2B approach instead
of a restricted B2C application. Currently, the complexity of interweaved subtasks
of product ordering in the web shop and provisioning of these products through a
back-end system hinders the reuse of provisioning capabilities through varying order
processes.

Figure 2.3 illustrates Hostit’s system architecture that supports both, the B2C
and the B2B access using a central service platform. The benefit of unifying and
channelling the access to the company-internal and -external services is an increased
flexibility and maintainability. To integrate a new service, it is published in the ser-
vice platform. Access control rights can now be centrally managed in the service
platform.

2.2.2 Drawbacks in State-of-the-art Service Provision

Using a state-of-the-art service provision platform has a number of drawbacks. To
integrate a new service not only the service needs to be published in the platform but
also the platform clients need to be changed to benefit from the new service. This
is the case because the clients of the service provision platform explicitly invoke
specific services and hence will not notice newly available services on the platform
automatically. Another drawback is that the service invocation order is hard-coded in
the clients. Thus, clients need to be changed to implement new or adapted business
processes that might be useful because of the newly available services. Last but not
least a state-of-the-art service provision platform does not provide fall-back solutions
in case of a service invocation error. Thus, if the invocation of a specific service fails

2 Core Concepts and Use Case Scenario 13

Fig. 2.4. State-of-the-art service provisioning

for instance because of a network problem on the provider side, the platform does
not know if there might be another service available with an equivalent functionality.

Figure 2.4 illustrates the service invocation logic inside the web shop and the
B2B systems. The little white shapes inside the web shop and the Heidelberger
Zeitung application symbolise the steps that form the internal application logic.
Some steps invoke company-internal or partner services on the service platform. The
binding of steps to services is hard coded inside the application. Thus, the application
logic will not make use of newly available service unless it is changed. The steps
of the application logic are duplicated in the web shop and the Heidelberger
Zeitung partner application. Thus, all these applications need to be adapted if they
want to benefit from changes in the service landscape. If a service in the platform
fails the application logic needs to cope with this failure. Thus, it needs to know if
there are functionally equivalent services available in the landscape and how they are
invoked.

2.2.3 Semantic Services

Semantic services promise to overcome the drawbacks of traditional service provi-
sion approaches. Therefore, Hostit engages Steve, an expert in semantic services,
to plan a Hostit service provision architecture that leverage innovative technolo-
gies and methodologies from that area. Steve’s first draft of a new Hostit architec-
ture looks much alike the current solution. However, there are a few changes that aim
at an improved flexibility, adaptability and maintainability of the entire architecture.
Figure 2.5 shows Steve’s first high-level plan for the semantic service solution.

One of the main differences compared to the architecture shown in Fig. 2.4 is
the reduced complexity of the clients of the Hostit service platform. The clients
now access the service by providing semantic service requests. They do not have to
state explicitly which services to use but describe their needs using semantics and

14 D. Kuropka et al.

Fig. 2.5. Draft architecture with semantic service provisioning

let the platform find out which of the available services to use for the fulfilment
of this request. Thus, the logic of composed services that together implement an
order processing is now in the platform, not in the client. Even more important, the
logic is not hard coded but it is composed at runtime and thus, capable of dealing
with changes in the service landscape. As soon as a new service is published in
the platform, it is considered as a candidate to be used in a service composition.
Furthermore, if a service fails the platform is able to identify semantically equivalent
services or service compositions and use these instead.

The components of such a semantic service provisioning platform, how it uses
semantics for dynamic service compositions and which technologies are available for
building up such a platform are the topics of this book. Thus, having read this book
you will understand how Hostit can set up a platform that offers all the benefits
mentioned above.

2.3 Adaptive Service Provision Approach

The traditional approach for using (Web) services in SOA bases on static binding
of services. During design-time of the application the developer selects proper ser-
vices and binds them to the applications. This implicates that the applications can
only adapt in a very limited manner to changes in the service environment. For intra-
organizational scenarios this deficiency is often tolerable, since the service environ-
ment is under full control of one organisation and unplanned changes are rather in-
frequent. In contrast to this, static binding of services is problematic when it comes
to inter-organisational scenarios where major parts of the service environment are
not under control of one entity. Static binding of services suffer from the following
drawbacks:

• Poor utilisation of new services: Static service binding enforces a manual adap-
tation of existing applications to include new, cheaper or better services. This

2 Core Concepts and Use Case Scenario 15

causes additional costs in the maintenance of applications and it limits the timeli-
ness of adaptations as well as the ease of implementation of new business models
which usually are combined with new services.

• Poor reliability: In inter-organisational scenarios services my fail or disappear
at any time for a large variety of reasons: communication and network failures,
overload, internal failures or simply disappearance of the providing organisation.
In all these cases, the static binding of services causes a (partly or even total) fail-
ure of the depending applications. In situations where it is impossible to simply
sit such a failure out (e.g. because of running costs) a time consuming and costly
manual adaptation of the applications is needed.

In this book we propose an approach which avoids the above mentioned draw-
backs by enabling a dynamic binding of services which leads to an adaptive service
provisioning. Instead of simply binding services to applications at design-time we
propose a sophisticated and adaptive service delivery life-cycle as shown in Fig. 2.6.
The entry or initial point of this delivery life-cycle is a semantic service request. In
contrast to a static service binding the semantic service request does consist of a
description of what shall be achieved and not which concrete service has to be ex-
ecuted. The semantic service request describes the initial and goal state and consist
therefore among other things out of the given data, data types, and conditions which
are met by the data as well as the desired type of data and desired effects beyond.
The data types, conditions and, effects are all specified in relation to a common set
of concepts—the domain ontology. Referring to the book’s use case scenario from
Sect. 2.2.1 a semantic service request (here formulated in natural language) might
be:

Given the domain joanna.hu (initial state) check if this domain is avail-
able (goal state).

a more complex semantic service request might look like this:

Given the domain joanna.hu and the credit card with the number
1234 5678 9999 0000, registered for Joanna, expiry date 1st of January 2010
(initial state) register the domain and charge the credit card with 19.99 €.

A detailed explanation of the formalisation, its structure, and the semantic evaluation
of a semantic request is presented in Chap. 5. Whereas ontologies are discussed in
Chap. 3.

Now we want to give a brief overview on the various steps and cycles shown in
Fig. 2.6. The planning sub-cycle is the first step in processing of the semantic ser-
vice request. At the beginning the semantic service provision platform tries to find
a service, which perfectly matches the semantic service request. Perfectly match-
ing means that the service is able to process the given data as input, that all pre-
conditions for the execution of the service are fulfilled and that the service output
fits to the desired type of data and effects. In case of successful matchmaking, the
Planning Sub-Cycle is completed. Otherwise the platform tries to find an abstract
composition of services, which is able to meet the semantic service request. Ab-
stract composition means that the composition does not directly bind to services.

16 D. Kuropka et al.

Fig. 2.6. The service delivery life-cycle

Rather the services are represented by semantic service specifications which act as
place holders for the real services. This proceeding allows a late binding of services
and features a better re-usability of service compositions which is useful for per-
formance issues (e.g. by caching of compositions). The composer starts composing
from the initial state of the service request. Given this state the composer searches
for services, which are executable in this state. By taking their results and effects
into account, the composer searches successively for executable services until either
the goal state of the semantic service request is met or a further composition is not
possible or reasonable. In case of successful composition or a perfect matching of
an individual service, an abstract service composition representation is created and
forwarded to the next sub-cycle. Otherwise the processing of the semantic service
request is aborted. Details on service matchmaking are provided in Sect. 3.5 and on
composition in Sect. 5.4.

Abstract service compositions are transformed into enactable service composi-
tions by the binding sub-cycle. This happens by binding the semantic service spec-
ifications—which act as place holders—to concrete services. For each place holder
the platform starts a negotiation on negotiable service properties with all matching
services. The platform tries to find a combination of services which fit as good as
possible to the desired properties of the semantic service request. It is worth men-

2 Core Concepts and Use Case Scenario 17

tioning that the properties of services which are discussed now are not the semantic
functionality of the service like the above mentioned input, pre-conditions, output
and effects of a service. Rather the properties describe qualities of the service ex-
ecution like for example the duration or the costs per execution. These properties
are limited insofar that they are not allowed to depend on the concrete input data.
When an agreement with a particular service is achieved a digital contract it is set
up and signed by both parties. Details on service binding including negotiation and
contracting are presented in Sect. 5.5. Services do not necessarily need to support
negotiation mechanisms. In such cases, the platform simply selects services by their
given service properties without conducting a negotiation procedure.

The third step in processing of semantic service requests is the enactment sub-
cycle. It receives enactable service compositions from the Binding Sub-Cycle and
enacts them by successively or—where possible—invoking the scheduled services
in parallel. The invocation of services is monitored by the platform for two reasons:
On the one hand it is monitored to verify if the previously contracted peculiarities
of properties are met. On the other hand the monitoring data is passed to a pro-
filer which aggregates the data to a service-specific profile. This profile contains
an aggregate of experiences made during past invocations of a service. It contains
information like the average service execution time or reliability in the sense of ob-
served probability of failure. This profile information can be used by the Planning
and Agreement Sub-Cycles to avoid unreliable services. Further details on invoca-
tion, monitoring and profiling of services are introduced in Chap. 6. After successful
enactment of the service composition the result is collected and it is send back to
requester.

As already mentioned in the beginning of this section, service environments are
quite dynamic when inter-organisational scenarios come into play. The service deliv-
ery life-cycle as shown in Fig. 2.6 on page 16 includes two mechanisms to handle the
dynamics when it comes to explicitly considered or unconsidered failures of services:
re-binding and re-planning. The definition of the term failure which is used here has
already been presented in Sect. 2.1 and is compliant to the definition in [16].

Considered failures are well known failures which might occur during the ex-
ecution of a service and are therefore explicitly specified as possible (even though
not desired and therefore hopefully seldom) results of a service. One example for
such an considered failure is the rejection of a credit card by a credit card charg-
ing service, which might occur if the credit card data is invalid or expired. Another
example is the physical loss of a package by a package shipping service (for ex-
ample by accident). Considered failures are handled in our platform by conducting
re-planning. In case a considered failure occurs during the invocation of a service,
the Planning Sub-Cycle is triggered to find a new composition. The composer tries
to find a solution which takes the already achieved results into account including
the specified undesired results of the failure. The new composition is required to
reach the goal specified in the original semantic service request notwithstanding the
occurred failure. (Refer to Sect. 5.4) Referencing the package shipping service this
might mean that a new package is seized and send. Naturally not all considered fail-
ures can be handled by re-composition. In case of the credit card charging service a

18 D. Kuropka et al.

recovery is not possible and it is even not useful if a credit card is invalid. Someone
may ask why we propose to handle considered failures by re-composition instead of
simply handling them by considering them directly in the original composition as it
is usual in common workflow applications. There are several reasons for using our
approach:

• The limitation of the composing algorithm to an optimistic composition reduces
the composition time. Optimistic composition means that all specified considered
failures are ignored as possible results during the composition. This reduces the
number of path through a composition and thus limits the size, complexity, and
search space of a composition.

• The proceeding of optimistic composition avoids infinite loops to handle failure
cascades. In the package shipping service example the recovery of the package
loss failure is simply done by resending a new package. However, the resent
package might get lost as well. This new failure has to be recovered once again
and so on.

• The flexibility is higher when compositions are re-planned at the time of fail-
ure instead of predefining static recovery mechanisms. Referring to the package
shipment example, a different shipment strategy or simply a different service of
a different provider might be chosen by the Planning Sub-Cycle or the following
Binding Sub-Cycle if the first or second shipment fails.

In contrast to the considered, are the unconsidered failures not explicitly spec-
ified for a service. Unconsidered failures are usually low-level issues like network
failures which are raised before or during the invocation of a service. The platform
has no detailed information about semantic effects of such failures except that these
failures just happen at a given point in time. For this reason it assumes in such cases
of failure, that the according service simply has not been executed and thus its de-
sired results and effects are not achieved. Such unconsidered failures are handled in
up to two phases. In the first phase the platform tries to recover the failure by re-
binding. This triggers a new pass of the Binding Sub-Cycle. Here an search for an
alternative equivalent service to the already invoked and failed service is conducted
by negotiation with proper services. If the search is successful, the new service is
invoked in substitution for the old one. Else the second phase is conducted. In this
second phase the platform tries to recover the unconsidered failure by re-planning
the composition in the Planning Sub-Cycle. Similar to the handling of considered
failures, a search for a new solution with different services is conducted which nev-
ertheless reaches the specified goal. In case this search is successful, the Binding
Sub-Cycle is invoked. After the outstanding service place holders have been bound
to concrete services the new composition is enacted in the Enactment Sub-Cycle.

As a summary of this section we should adhere, that the challenges on adaptive-
ness and reliability of a global and thus dynamic service environment can be met
by a three-staged semantic-enabled adaptive provision of services as proposed here.
The next chapter will go into more details regarding the semantic aspects of service
specification and service matchmaking.

3

Ontologies and Matchmaking

Emilia Cimpian, Harald Meyer, Dumitru Roman, Adina Sirbu, Nathalie Steinmetz,
Steffen Staab, and Ioan Toma

3.1 Overview and Motivation

The word ontology is used with different meanings in different communities. We dis-
tinguish between Ontology (uncountable reading and capital initial) and an ontology
(countable reading and lower-case initial). In the first case, we refer to a philosophi-
cal discipline, namely the branch of philosophy which deals with the nature and the
organisation of reality. Unlike the special sciences, each of which investigates a class
of beings and their determinations, Ontology regards all the species and tries to an-
swer the question: What is being?, or What are the features common to all beings?
In the second case, we refer to an information object and engineering artefact as the
most prevalent use in the computer science communities.

Ontologies are a means to formally model a specific universe of discourse. The
ontology engineer analyses relevant entities and classifies them. The backbone of
an ontology consists of a concept hierarchy, i.e., a taxonomy. Associations define
relationships between concepts and can be instantiated accordingly. In a domain of
software engineering “actor”, “end user”, and “use case” might be relevant concepts,
where the first is the super-concept of the second. “participatesIn” may be considered
a crucial association holding between actors and use cases. A concrete requester
participating in a concrete use case would then be an instance of its corresponding
concept.

Practically speaking, ontologies exhibit many similarities to existing conceptual
modelling techniques, e.g., the Entity Relationship Model or Unified Modeling Lan-
guage (UML). Therefore, many best practices from these methodologies can and
should be applied to ontologies and vice versa. However, ontologies also differ from
these approaches in the following dimensions:

1. The primary goal of ontologies is to enable agreement on the meaning of specific
vocabulary terms and, thus, to facilitate information integration across individual
applications;

20 E. Cimpian et al.

2. Ontologies are formalised in logic based representation languages. Their seman-
tics are thus specified in an unambiguous way.

3. The representation languages come with executable calculi enabling querying
and reasoning at run time.

While logic based representations and corresponding calculi are bread and but-
ter for computer scientists, what is less obvious is the item of agreement. Gruber
originally defined the notion of an ontology as an “explicit specification of a con-
ceptualization” [77, 78]. This definition was later on often extended to include the
sharing of the conceptualization between a group of people, e.g: “An ontology is a
model of linguistic means of expression on which several actors have agreed on and
which are (or can be) used by those actors.” [114]

Thereby, a conceptualisation or model abstracts from the situations that arise in
a domain of interest. It constraints the situations that may hold in this domain. For
instance, in the domain of software engineering we may constrain that each instance
of the concept actor must be involved in at least one use case. We may also constrain
the binary relation “participatesIn” to hold only between the domain concept “ac-
tor” and the range concept “use case”. The conceptualisation may also include more
complex rules as well as instances. For example, we may require that “Java” and “C”
are instances of the concept “programming language” and exist in the conceptualised
software engineering domain.

Such a conceptualisation may be specified in any sufficiently expressive formal
language. In Sect. 3.2, we will give a few examples that are widely used in the
ontology community. By formally specifying such a shared conceptualisation of a
domain, the vocabulary terms become accessible for precise discussion by the ontol-
ogy stakeholders as well as for automatised use via formal calculi. By both means,
terminological disagreements and misunderstandings may be reduced significantly,
though—one must concede—not entirely.

Use of Ontologies

The usage of an ontology is of interest whenever the costs that arise through termi-
nological disagreements and misunderstandings while not using ontologies exceed
the costs for providing ontologies and formalised descriptions of situations. There
are a number of characteristics of settings where use of ontologies appears promis-
ing:

1. Important heterogeneous (and possibly imprecise) vocabularies: When vocabu-
laries constitute an important asset by itself, the value of formalising the domain
tends to increase, too.

2. Small to medium sized domain: Open domains, e.g. the content of general web
pages, cannot be appropriately formalised and change too often. Small and
medium sized domains naturally exhibit boundaries between what should and
what should not be part of a conceptualisation.

3. Multitude of participants with overlapping interests: In such a situation the need
for agreement rises.

3 Ontologies and Matchmaking 21

4. Long-term interest in understanding of vocabulary and corresponding data:
Over a longer period of time the increased benefits of improved understanding
tend to outweigh the costs of providing ontologies with corresponding data.

5. Many and/or (rather) expensive transactions: More frequent and/or more valu-
able transactions, e.g. exchange of data, naturally generate more benefit through
preciseness implied by the use of an ontology.

To give a concrete example, let us illustrate these points for management of ser-
vice oriented architectures.

Ontologies for the Service Lifecycle

The value proposition for ontologies used to manage the service life cycle lies in
reducing errors, failures, and time-to-manage via ontologies that (i) increase agree-
ment about core concepts in service provisioning and (ii) provide (semi-)automation
of crucial service lifecycle management tasks.

Service provisioning may be conceptualised as a complex sub-domain of soft-
ware and systems engineering. The issue is of utmost monetary or other value to the
service lifecycle stakeholders, i.e. its service providers and service users (cf. char-
acteristics above). Service provisioning touches upon many different aspects of the
world and implements models of the world. Thereby, the core domain of services
that describes services as software entities and that describes the working of and in-
terrelationships between services is of moderate size, while the application domain
of services that describes what services are about (e.g. about payment, customer re-
lationships) may be very large—though circumscribed by the boundaries of what the
software accomplishes. Hence, the different ontologies that are relevant for service
modelling, i.e. (at least) one for modelling the software aspects and (at least) one
for modelling application aspects remain of small to moderate size (2). At the same
time each service management platform has many stakeholders (3) with long-term
interests (4) that often attribute many valuable transactions (5) with the services per-
formed on the service platform (e.g. large numbers of business transactions).

In the remainder of this chapter let us now survey possibilities for formally
specifying conceptualisations of the domain of services and service application do-
mains and illustrate their automatised exploitation by reasoning tasks such as service
matchmaking.

3.2 Ontology Languages

The foundations of formal approaches for specifying domain conceptualisations, i.e.
ontology languages, date back to work on (i) knowledge representation and reason-
ing, (ii) database management, (iii) logic programming, and (iv) object oriented pro-
gramming. In the following we will elucidate work on description logics and logic
programming, two paradigms with orthogonal concerns.1

1 The reader may note that for a long time the two paradigms seemed to be incongrueable,
but very recently a theoretical framework has been presented for joining them into a coherent
theory [135].

22 E. Cimpian et al.

3.2.1 Description Logics

The primary purpose of the knowledge representation and reasoning community was
the representation of knowledge about specific situations and intelligent inference of
consequence implied by these situations, e.g. diagnosis, theorem proving, natural
language understanding or intelligent game playing. An important strand of research
in this area adopted some ideas from object oriented programming. WOODS and
BRACHMAN represented knowledge about situations in so-called semantic networks,
which basically constituted graphs of labelled nodes for entities and labeled edges
for relationships. In their most seminal work [206, 31] they asked and answered
the question, what is the formal meaning of a semantic network irrespective of the
algorithm that interprets it? BRACHMAN proposed to formalise the meaning of the
previously informal graph nodes and edges. He recognised that a basic set of patterns
in first order predicate logics formally captures the intuitive meaning of different
links very well—in fact, he re-discovered core patterns of logical reasoning described
over 2000 years before by Aristoteles (cf. [181]).

Core to this approach is the distinction of a knowledge base into a terminological
box (T-Box) and an assertional box (A-Box). The terminological box captures rea-
soning patterns that are restricted to knowledge about the class level, i.e. which are
independent from a given situation, like the following:

Given Every service has at least one hasServiceDescription (3.1)

Given
A paymentFunction has at least one hasServiceDescription
that is a PaymentDescription

(3.2)

Concluded Every paymentFunction is a service (3.3)

In contrast, the A-Box captures reasoning patterns that concern knowledge about
specific instances, i.e. knowledge about specific situations, like the following:

Given MyFavoritePaymentWay hasServiceDescription “This service
does this and this.”

(3.4)

Given
“This service does this and this.” is instance of PaymentDe-
scription

(3.5)

Concluded MyFavoritePaymentWay is a paymentFunction (3.6)

Concluded MyFavoritePaymentWay is a service (3.7)

Though some patterns mix the two levels of A-Box and T-Box, e.g. the class of
Italians is defined by all people that are citizens of the specific country Italy, over-
all this distinction is useful for many modelling purposes and corresponds closely
(though not completely) to the distinction between the formalisation of a conceptu-
alisation in the T-Box and the formalisation of a situation in the A-Box.2

2 Italy might be an instance required in every conceptualisation of a specific domain of in-
terest, e.g. about EU government.

3 Ontologies and Matchmaking 23

Early research in description logics was heavily influenced by building practical
systems for the above mentioned purposes. Systems like KL-One [33] or Classic [32]
have been extremely influential in the 1980s. In spite of their successes, scalability
and predictability of these systems was low. Predictability was low, because these
systems would come with incomplete reasoning procedures3 that would return with
unexpected results or would not stop at all when reasoning, even when the size of the
knowledge base was limited up to a few hundred concepts (cf. [83]).

These two drawbacks were tackled by two lines of research. First, people inves-
tigated the formal properties of the description logics languages. Each description
logics language is defined by the exact set of logical patterns it includes. It was
found that some simple reasoning patterns turn out an undecidable description logics
language [173], while other useful combinations yield decidable fragments of first-
order predicate logics. Second, Horrocks [91] exploited progress made in the field of
theorem proving (more specifically in tableaux reasoning) for an expressive descrip-
tion logics in order to scale sound and complete reasoning in description logics by
two orders of magnitude. Thereby, the decidability of the language proved to be cru-
cial in order to find and exploit optimisation procedures for the common reasoning
problems in description logics that would be intractable in the worst case even for
small problems—but that hardly ever turn out to come even close to the worst case.

Standardisation Efforts

Web Ontology Language (OWL) [209] is a Web Ontology Language, and defines Web
vocabularies, the meaning of terms in the vocabularies and the relationships among
these terms. Different from the languages (e.g. HTML), which are designed for pre-
senting Web contents to humans, the goal of OWL is to enable the Web for machines
and allow the automated processing and integration of data from the Web. The OWL
syntax supports such processing and integration, as it distinguishes the core aspects
of a conceptual model, i.e. its classes, associations and objects, in a Web compatible
model, i.e. with the help of globally unique and (often) de-referencable identifiers,
the Unified Resource Identifier (URI)’s or unique resource identifiers. For this pur-
pose of syntax, much of the preceding Web knowledge representation language RDF
[210] has been reused. The OWL semantics is mostly inherited from work in descrip-
tion logics. Reasoning engines that realise OWL semantics may perform useful rea-
soning tasks on (Web) data. For example, OWL provides vocabulary for describing
properties and classes, including relations between classes, characteristics of prop-
erties, rich typing of properties, enumerated classes, equality and cardinality. OWL
consists of three increasingly expressive sub-languages:

1. Web Ontology Language Lite (OWL Lite) primarily provides a classification hi-
erarchy and simple constraints. For instance, OWL Lite supports cardinality con-
straints, but it only allows cardinality values of 0 or 1. OWL Lite is less expres-
sive but has a lower complexity, thus it is simpler to provide reasoning support

3 Some of which turned out to be faulty, once their theoretical properties were better under-
stood.

24 E. Cimpian et al.

for OWL than Web Ontology Language with description logics (OWL DL) and
Full Web Ontology Language (OWL Full).

2. OWL DL (DL stands for description logics) provides maximum expressiveness
and supports computational completeness (all conclusions are guaranteed to be
computable), and decidability (all computations will be finished in finite time)
of a reasoning system, but has a higher worst-case complexity than OWL Lite.
OWL DL includes all OWL language constructs with certain restriction, e.g.
the restriction of type separation: a class can neither be an individual nor be a
property, and a property can neither be an individual nor be class. OWL DL has
been developed to draw on the rich experience of research in description logics
and to provide maximum expressiveness while remaining a decidable language.
Current efforts towards OWL 1.1 will push the envelope a bit in order to accom-
modate most recent findings, but OWL 1.1 will still remain close to OWL DL
and decidable.

3. OWL Full supports maximum expressiveness and the syntactic freedom of Re-
source Description Framework (RDF), but without computational guarantees.
As an example, in OWL Full a class can be considered as a collection of indi-
viduals and simply as an individual at same time. OWL Full allows an ontology
to augment the meaning of the pre-defined vocabulary. Because of such freedom
OWL Full allows for formulating logical theories that are undecideable. There-
fore it is impossible to support sound and complete reasoning for OWL Full.

The following rules describe the relations among three sub-languages, with re-
spect to the soundness of expression and validity of conclusion:

• Each sound OWL Lite ontology is a sound OWL DL ontology.
• Each sound OWL DL ontology is a sound OWL Full ontology.
• Each valid OWL Lite conclusion is a valid OWL DL conclusion.
• Each valid OWL DL conclusion is a valid OWL Full conclusion.
• Each conclusion reached in OWL DL about an OWL Lite ontology is also reached

with an OWL Lite reasoner.

However, the last sentences does not apply analogously for OWL DL and OWL Full,
i.e. there are ontologies formulated in OWL DL which lead to sound conclusions in
OWL Full that could not be reached with an OWL DL reasoner.

3.2.2 Logic Programming

Research and practice in database management is motivated by efficient, yet pow-
erful access to a consistent, non-redundant database. With the adoption of the rela-
tional algebra (cf. [47]) as a means to store and access data, the previous approach
to data management by implicitly imperative, hierarchical navigation turned into a
declarative approach that described what data were to be accessed. The relational al-
gebra approach requires the provisioning of a relational schema that describes which
types of data may be instantiated in which places. Chen [43] developed the Entity-
Relationship model that would allow the user to capture a conceptualisation of the

3 Ontologies and Matchmaking 25

Table 3.1. Extensional definitions of two example database relations

Service
ID Name Location ID
s1 myFavoritePaymentWay l1
s2 MumsFavoritePaymentWay l2

Deploy
Location ID Location
l1 HPI, Potsdam
l2 Transit, Illmenau

domain and that could be translated—with some loss of information—into a rela-
tional schema.

When investigating the properties of the relational algebra researchers like H. Gal-
laire soon recognised that the relational algebra was close to using a first-order pred-
icate logics (PL1) formula as a query to a set of extensionally defined predicates.
For instance, the two queries 3.8 and 3.9 executed on the example relations from
Table 3.1 are equivalent; the two queries 3.9 and 3.10 just constitute denotational
variants:

Relational Algebra: πName,LocIDSvc �� Deploy (3.8)

PL1 Formula: ∃x, y Svc(x, Name, y) ∧ Deploy(y, Loc)) (3.9)

Prolog Query: : −Svc(_1, Name, _2), Deploy(_2, Loc) (3.10)

Prolog Rule: RunsAt(N,L):-Svc(_1, N, _2), Deploy(_2, L) (3.11)

The generalisation of this approach includes intensional Horn rules in addition
to the first-order query formula, such as also used in Prolog. Initially, the logic pro-
gramming community investigated the optimised computation of Prolog by inclusion
of procedural aspects. The database management community and—for a long time
now—the logic programming community have been more interested in set process-
ing of facts, i.e. in deriving all facts to which a query would apply when considering
the extensionally defined relations and the intensional Prolog-like rules.

This approach came with particular problems when treating negation in Prolog
rules. Prolog uses the strategy of negation-by-failure, i.e. when a part of the premise
of a rule is negated, Prolog (i) requires that all variables in the negated part of the
premise be fully instantiated and (ii) that such an atomic and ground fact can either
be proven—then its negation is false—or it can not be proven, then its negation
is assumed to hold. While this assumption may not hold in general, this does not
pose a problem for the rule modeller when he is aware of the assumption and it is
useful under many circumstances, e.g. when one may assume that one’s database
of services is complete. This strategy, however, poses a problem for set-oriented
processing with recursion and negation in rules. Several specific semantic models
and strategies have been proposed to deal with this model, among which stratification

26 E. Cimpian et al.

[121], stable model semantics [70] and well-founded semantics [199] are the most
popular ones.

Finally, the need for object oriented modelling primitives has been recognized
in these communities. One important result, F-Logic [104], which is presented be-
low in more details, was the development of syntactic extensions on top of logic
programming approaches in order to capture the relationship between classes and/or
relationships in a more intuitive manner.

As a result, the formal specification of a conceptualisation was made possible by
the definition of classes, relationships and intensional Prolog-like rules (e.g., (3.11)).
The specification of situations was found in the extensional definition of relations,
such as depicted in Table 3.1.

Standardisation of Rule Languages

W3C recently started an initiative to provide a standard for rules on the Web. The
Rule Interchange Format (RIF) Working Group4 was formed at the end of 2005, with
the aim to produce a core rule language plus extensions which together allow rules
to be translated between rule languages and thus transferred between rule systems.
As of August 2007, the group has published two drafts:

• RIF Use Cases and Requirements5: it presents a set of use cases that are repre-
sentative of the types of application scenarios that the RIF is intended to support.

• RIF Core Design6: it develops the core of RIF through a set of foundational con-
cepts shared by all RIF dialects; the overall RIF design takes the form of a layered
architecture organised around the notion of a dialect (i.e. a rule language with a
well-defined syntax and semantics). As currently defined, RIF Core corresponds
to the language of definite Horn rules with equality. Syntactically, however, RIF
Core has a number of extensions to support features such as objects and frames,
URIs as identifiers for concepts, and XML Schema data types.

Although the RIF specification is far from being finalised, RIF Core already pro-
vides an interoperability basis for future core RIF dialects, which are expected to
cover a number of important paradigms in rule based specification and program-
ming, such as production rules, logic programming, FOL based rules, reactive rules,
and normative rules (integrity constraints).

3.2.3 Combining Description Logics and Logic Programming

When comparing the two paradigms of description logics and frame logics, one may
recognise that the two paradigms share a number of characteristics:

• They both allow for the specification of a conceptualisation and a situation.
• They both support some kind of rules.

4 http://www.w3.org/2005/rules.
5 http://www.w3.org/TR/rif-ucr.
6 http://www.w3.org/TR/rif-core.

3 Ontologies and Matchmaking 27

Table 3.2. Comparing OWL-DL and F-Logic

Characteristic Common Description
Logics (OWL-DL)

Common Logic
Programming Approach

Computational
Complexity

Decidable Undecidable

Expressiveness PL1 formulas restricted
to two variables

Turing Powerful

Reasoning Terminology driven Data driven
Semantics More natural

PL1 semantics
Fixed-point semantics

Overall Strength and Focus T-Box reasoning A-Box reasoning

• They both (can) adopt some frame-like structures as found in object oriented
modelling and programming.

• They both allow for querying the (combined) formalisation.

However, they also exhibit significant differences as can be seen in Table 3.2.

Ontology Language Paradigms

F-Logic [105] is a formalism that combines two successful approaches for modelling
and manipulating data: deductive databases and object oriented approaches. It adopts
the declarative semantics of deductive databases and adds the rich modelling support
offered by object oriented approaches. F-Logic has a model theoretic semantics and
a sound and complete proof theory. By analogy with predicate calculus, F-Logic
stands in the same relation with to the object oriented paradigms as predicate calculus
stands to relational programming. There are two flavours of F-Logic: (1) a first-order
flavour and (2) a logic programming flavour. The first-order flavour is a syntactic
materialisation of the classical first-order logic. The logic programming flavour is a
subset of the previous flavour but as in other logic programming languages adopts
negation-as-failure or other non-classical strategies for negation, such as fixed-point
semantics.

In the rest of this section we are going to give an overview of the main constructs
in F-Logic and furthermore we are going to exemplify them using the book’s use
case scenario.

• Objects are fundamental constructs in F-Logic. They are the representation of
real word entities being identified by object identifiers (OIDs). F-Logic uses first-
order variable-free terms to represent object identity. For the example scenario,
real entities that can be modelled as objects in F-Logic are Joanna or credit-
CardOwner(JoannaCreditCard1). Objects usually have attributes. For
example:
Joanna[firstName -> "Joanna", lastName -> "Solyom"].

28 E. Cimpian et al.

Following the principles of object oriented approaches objects IDs are not visible
to users. Objects are referenced by their names not by their OIDs. In F-Logic, one
object may also have multiple values for one of its attributes.7 For example:
Joanna[hasCreditCard->{JoannaCreditCard1, JoannaCreditCard2}].

• Variables are a fundamental concept in F-Logic. Every alphanumeric set of char-
acters prefixed by ? is consider a variable. For example in the following expres-
sion, that might be part of a query, the firstName and lastName attributes
are not bound. This is expressed by using the variables ?X and ?Y:
Joanna[firstName -> ?X, lastName -> ?Y].

• atoms in F-Logic are expressions of the form object[attribute ->
value]. For example:
Joanna[firstName -> "Joanna"]. and Joanna[lastName -> "Solyom"].

• molecules are used to express in a more condensed way the information from
different atoms. For example the information expressed before can be written in
a single molecule:
Joanna[firstName -> "Joanna", lastName -> "Solyom"].

• Methods are also allowed in F-Logic. They are functions that take arguments and
return values. For example the following expression
Joanna[creditBalance(JoannaCreditCard1) -> 1000].
says that Joanna has a method creditBalance, which for the argument
JoannaCreditCard1 has the value 1000. Methods can also return set val-
ues.

• Classes are introduced by class signatures. For example:
person[firstName => string, lastName => string].
Please notice that the symbol => is used instead of ->, the symbol used to in-
dicate the value of an attribute in an object. The class membership relation is
introduced by ‘:’. For example: Joanna:person. , while the subclass rela-
tion is introduced by ‘::’. For example: male::person.

WSML

The Web Services Modeling Language (WSML)8 [54] is a language for the specifica-
tion of different aspects of Semantic Web services. It provides a formal language for
the Web Services Modeling Ontology (WSMO) [163] which is based on well-known
logical formalisms, specifying one unifying language framework for the semantic de-
scription of Web services, starting from the intersection of Datalog and the Descrip-
tion Logic SHIQ. This core language is extended in the directions of Description
Logics and Logic Programming in a principled manner with strict layering.

WSML is a Web language. Therefore it makes use of Internationalized Resource
Identifier (IRI) as identifiers. WSML defines XML and RDF serialisations for inter-
operation. WSML distinguishes between conceptual and logical modelling in order
to support users who are not familiar with formal logic, while not restricting the
expressive power of the language for the expert user.

7 Minor syntactic variances have been used for F-Logic use over the years.
8 http://www.wsmo.org/wsml.

3 Ontologies and Matchmaking 29

Fig. 3.1. The WSML language variants

WSMO [163] provides a conceptual model for the description of various aspects
of services towards such Semantic Web Services (SWS). In particular, as we shall
see in the sections below, WSMO distinguishes four top-level elements: Ontologies,
Goals, Web services, and Mediators. The WSML takes into account all aspects of
Web service descriptions identified by WSMO.

A concrete goal in the development of WSML is to investigate the usage of differ-
ent formalisms, most notably description logic and logic programming in the context
of ontologies and Web services. Three main areas can benefit from the use of for-
mal methods in service descriptions: Ontology description, Declarative functional
description of Goals and Web services, and Description of dynamics.

WSML defines a syntax and semantics for ontology descriptions. The underlying
formalisms which were mentioned earlier are used to give a formal meaning to ontol-
ogy descriptions in WSML. Figure 3.1 shows the variants of WSML. These variants
differ in logical expressiveness and in the underlying language paradigms and al-
low users to make the trade-off between provided expressiveness and the implied
complexity for ontology modelling on a per-application basis.

• WSML-Core is based on by the intersection of the Description Logic SHIQ
and Horn Logic, based on Description Logic Programs [75]. It has the least ex-
pressive power of all the WSML variants. The main features of the language are
concepts, attributes, binary relations and instances, as well as concept and rela-
tion hierarchies and support for data types. with respect to OWL, WSML-Core
can be seen as a semantic subset of OWL Lite.

• WSML-DL captures the Description Logic SHIQ(D), which is a major part of
the (DL species of) OWL [21] (OWL DL).

30 E. Cimpian et al.

• WSML-Flight is an extension of WSML-Core, which provides a powerful rule
language. It adds features such as meta-modelling, constraints, and non-mono-
tonic negation. WSML-Flight is based on a logic programming variant of
F-Logic [105] and is semantically equivalent to Datalog with inequality and (lo-
cally) stratified negation. WSML-Flight is a direct syntactic extension of WSML-
Core and it is a semantic extension in the sense that the WSML-Core subset of
WSML-Flight agrees with WSML-Core on ground entailments).

• WSML-Rule extends WSML-Flight with further features from Logic Program-
ming, namely the use of function symbols, unsafe rules and unstratified negation
under the Well-Founded semantics.

• WSML-Full unifies WSML-DL and WSML-Rule under a first-order umbrella
with extensions to support the non-monotonic negation of WSML-Rule. The se-
mantics of WSML-Full is currently an open research issue.

As shown in Fig. 3.1, WSML has two alternative layerings, namely, WSML-
Core ⇒ WSML-DL ⇒ WSML-Full and WSML-Core ⇒ WSML-Flight ⇒ WSML-
Rule ⇒ WSML-Full. For both layerings, WSML-Core and WSML-Full mark the
least and most expressive layers. The two layerings are to a certain extent disjoint
in the sense that inter-operation in WSML between the Description Logic variant
(WSML-DL) on the one hand and the Logic Programming variants (WSML-Flight
and WSML-Rule) on the other, is only possible through a common core (WSML-
Core) or through a very expressive superset (WSML-Full).

WSML is an ontology language which distinguishes itself from other ontology
languages (i.e. RDFS and OWL) in the following aspects. WSML is an extension of a
significant part of RDFS through the possibility of specifying local attributes, range
and cardinality constraints for attributes and attribute features such as symmetry,
transitivity and reflexivity. Moreover, WSML (in its rule based variants) provides an
expressive rule language which can be used for the manipulation of RDF data. With
WSML one can capture both Description Logics and Logic Programming paradigms
in one coherent framework. For a complete description of the language, we refer the
reader to [54].

3.3 Domain Ontologies

3.3.1 Tools and Approaches for Creation and Maintenance

As any other new technology, ontologies need tool support in order to proceed from
a research innovation to a wide spread knowledge representation. Numerous ap-
proaches in modelling and representing ontologies have emerged during the last
years, from the very simple syntax highlighting to the newly proposed multidimen-
sional visualisation tools. Simultaneously, several tools have been built to allow easy
creation, visualisation and manipulation of ontologies.

In this section, we describe the general ontology creation approach and some of
the most well-known ontology modelling and visualisation tools. As we are inter-

3 Ontologies and Matchmaking 31

ested in this book, in the domain of Web services, we will focus on tools that allow
the modelling and visualisation of ontologies like OWL and WSMO.

Ontology Engineering Mechanisms

Several methodologies for ontology engineering have been elaborated during the last
decades. [29] conducted a study based on more then 20 such methodologies, con-
cluding that the majority of them propose 6 steps for ontology creation and mainte-
nance, as follows:

1. Domain/Requirements analysis;
2. Conceptualisation;
3. Implementation;
4. Evaluation;
5. Population;
6. Evolution and maintenance.

The first phase, domain analysis, consists of the detailed analysis of the domain
that is going to be modelled, having as result a clear understanding of those aspect
of the domain that are going to be represented in the ontology and a set of require-
ments. This step also includes knowledge acquisition in terms of re-usage of existing
ontological sources or performing ontology learning operations. The second step,
conceptualisation, consist of the definition of the concepts, relations and instances
that are going to be used in representing the domain; the result is the corresponding
conceptual model. The implementation phase consists of representing the conceptual
model in an ontology representation language with the adequate expressiveness. The
forth phase consists of the evaluation of this initial ontology against the previously
identified requirements. The evaluation may trigger modifications of the conceptual
model, and as a consequence of the implementation as well. The population phase
deals with the alignment of concrete application data to the implemented ontology.
Further modifications or even complex re-engineering tasks are performed in the last
phase, evolution and maintenance.

Protégé-OWL Editor

Protégé [71] is an ontology engineering environment that can be extended to support
different ontology formats. The Protégé-OWL editor is an extension of Protégé9 that
supports the Web Ontology Language. Some of the editor’s functionalities are:

• Load and save OWL and RDF ontologies.
• Edit and visualise classes, properties and Semantic Web Rule Language (SWRL)

rules.
• Define logical class characteristics as OWL expressions.

9 http://protege.stanford.edu.

32 E. Cimpian et al.

• Execute reasoners such as description logic classifiers.
• Edit OWL individuals for Semantic Web markup.

Being a Protégé plug-in, the Protégé-OWL editor can also benefit from the
generic services provided by the core platform, such as an event mechanism or undo
capabilities [110]; another advantage is that the already existing plug-ins can be used
for OWL (either directly or updated with very little effort). The Protégé-OWL plug-in
has, in its turn, several ontology visualisation extensions, like OWLViz, TGVizTab
[9] and Jambalaya [184], that allow different visualisation of the ontologies (like
graph-structures or graphical representations).

WSMT

Web Service Modeling Toolkit (WSMT)10 is a modelling environment for the
WSMO, offering support for modelling ontologies, goals, Semantic Web services,
and mediators.

Currently WSMT contains the WSMO Ontology Editor/Visualizer plug-in, the
Ontology Mapping plug-in, and the Monitoring plug-in. WSMT relies on WSMO
API and uses WSMO4j as its reference implementation. The Ontology Editor and
Visualizer is a tool for creating, publishing, and visualising WSMO elements; addi-
tionally it offers an embedded reasoner and an interface for querying the WSMO de-
scriptions under development. The Ontology Mapping tool provides semi-automatic
mechanisms for creating alignments between heterogeneous ontologies [132]. Such
alignments can be stored and later used for run-time mediation requests inside Web
Service Modeling Execution Environment (WSMX). Finally, the Monitoring tool is
used in monitoring both the WSMX itself (together with its components) and the ex-
ecution of the Semantic Web services through WSMX. Another tool for modelling
WSMO ontologies is WSMO Studio,11 which provides similar functionalities.

3.3.2 A Domain Ontology Example

This section presents an example ontology for the domain of Internet Service
Providers (ISPs), described in the book’s use case scenario. The main purpose of
a domain ontology is to capture the concepts, relations, instances, and axioms of the
chosen domain. Our aim in this section is to provide at the same time an overview
of the ontology, and concrete examples of how each of the ontology elements can be
modelled.

For exemplification we have chosen the WSML, and from the five variants pre-
sented in Sect. 3.2, the WSML-DL variant has been selected. The main advantage of
using WSML-DL is the decidability and the possibility to perform complex reason-
ing tasks that are not supported or very costly in case of a rule based language.

Every WSML specification should start with the wsmlVariant keyword, fol-
lowed by an identifier for the WSML variant. For WSML-DL this is:

10 http://sourceforge.net/projects/wsmt.
11 http://www.wsmostudio.org/.

3 Ontologies and Matchmaking 33

http://www.wsmo.org/wsml/wsml-syntax/wsml-dl

The specification of the WSML variant is optional, but recommended, as it facilitates
the work of tools (which can recognise the intention of the author and react to it).

Next comes an optional block for namespace references, preceded by the key-
word namespace. Each namespace reference, except the default namespace, con-
sists of a namespace prefix and the IRI which identifies the namespace. The default
namespace does not contain a namespace prefix.

An ontology declaration starts with the keyword ontology optionally followed
by an identifier. If no identifier is specified, the locator of the ontology serves as iden-
tifier. As for almost any WSMO element, a set of non-functional properties can be
specified, providing information that does not affect the functionality or the element,
like title, description, language etc. The majority of the recommended non-functional
properties are properties defined in the Dublin Core Metadata Element Set.12 Import-
ing other ontologies or use of mediators are also part of the header.

Listing 3.1 is an example prologue of a WSML-DL ontology. This ontology is
called “dsc4isp”, since it defines the necessary terminology for describing dynamic
supply chains for Internet service providers like in the use case scenario. The full
source code of the ontology can be downloaded at:

http://kuropka.net/ssp-book/dsc4isp.wsml

An WSML ontology specification may contain concepts, relations, instances, re-
lation instances and axioms:

Concepts

Concepts are defined by their subsumption hierarchy and their attributes, including
range specification. The range of the attributes can be a datatype or another concept.
There are two kinds of attribute definitions: constraining definitions, using the

Listing 3.1. An example ontology header

wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-dl"
namespace {"http://www.example.org/ontology#",

dc _"http://purl.org/dc/elements/1.1#",
wsml _"http://www.wsmo.org/wsml/wsml-syntax#"}

ontology dsc4isp
nonFunctionalProperties
dc#title hasValue "ISP Domain Ontology"
dc#description hasValue "An ontology for describing

knowledge related to Internet service providers"
dc#format hasValue "text/x-wsml"
dc#language hasValue "en-us"

endNonFunctionalProperties

12 http://dublincore.org/documents/dces/.

34 E. Cimpian et al.

Listing 3.2. A concept example

concept contact
concept domainName
name ofType _string
tld impliesType TLD
isRegisteredTo impliesType contact

keyword ofType and inferring definitions using the keyword impliesType. In
the first case, the values of the attribute are constrained to having the mentioned type,
while in the latter, the values of the attribute are inferred to have the mentioned type.

In the case of WSML-DL, the constraining definitions may only be used for data
type ranges. This means that attribute definitions of the form A ofType D are only
allowed if D is a data type identifier. Listing 3.2 is an example of a concept definition
valid in WSML-DL.

The concept hierarchy of our ontology example is presented in Fig. 3.2. All the
figures representing different aspects of the domain ontology are snapshots taken
using the WSML Visualizer, a graph based ontology editing and visualising solution
for WSMO. The WSML Visualizer belongs to the Web Services Modeling Toolkit,
introduced in Sect. 3.3.1.

The concepts presented in the figure can be grouped into three categories: con-
cepts related to persons, to domains, and to payment operations.

1. The concepts related to persons are: person, phone, fax, address, and contact.
A contact specifies the contact information for a person, and this information
refers to the person’s phone, fax, address, but also other data, like e-mail or
organisation.

2. The basic concepts related to domains are: domainName, TLD (representing the
top-level domain extension of a domainName), domainState and nameServer
(with the corresponding nameServers, defined as a list of name servers). The
genericTLD is a sub-concept of TLD, and represents those TLDs used by a par-
ticular class of organizations (for example, .com for commercial organisations).
Further on, the verisignTLD is defined as a genericTLD operated by VeriSign
Global Registry Services (.com, .net). The countryCodeTLD is a two letters
long TLD used by a country or a dependent territory, for example .at for Aus-
tria. Correspondingly, we have defined the genericDomainName (a domain with
a genericTLD) and the ccDomainName (a domain with a countryCodeTLD) as
subconcepts of the domainName.

3. With respect to payment, the basic concepts are paymentData, paymentTransac-
tionData (a handle to the paymentData, containing also its validity), invoiceNum-
ber, amountOfMoney. A creditCard is defined as a subconcept of payment-
Data, having the type specified by a creditCardType. Two subconcepts to pay-
mentTransactionData are defined: payPalTransactionId and saferpayTransac-
tionHandle. The saferpayTransactionInformation extends the handle with in-
formation relative to the transaction, for example: an authorisation code, a time
stamp, the state of the payment (having the type paymentState) etc.

3 Ontologies and Matchmaking 35

Fig. 3.2. A concept hierarchy

Listing 3.3. A relation example

relation hasDomainState(impliesType domainName,
impliesType domainState)

Relations

A relation definition starts with the keyword relation, followed by an identi-
fier. A relation can be defined as subRelationOf another relation. The usage of
impliesType and ofType for parameter type definitions corresponds to the us-
age in attribute definitions. In WSML-DL relations are binary, and the parameters are
strictly ordered. Also, the ofType keyword is only allowed in combination with a
datatype and only the second parameter may have a datatype at its range. Listing 3.3
is an example of a relation valid in WSML-DL.

36 E. Cimpian et al.

Fig. 3.3. Some example ontology relations

The domain ontology defines the following set of relations, also depicted in
Fig. 3.3:

• hasDomainState(domainName, domainState) attaches a domainState to a do-
mainName object, indicating the state (unchecked, available, unavailable, reg-
istered).

• domainNameServers(domainName, nameServers) states that a domainName is
registered with the given list of nameServers.

• hasAddress(person, address) holds between a person and its address.
• creditCardOwner(creditCard, contact) states that a person described through the

contact is the legal owner of a creditCard. Each creditCard instance can have only
one contact.

• paymentTransaction(paymentData, paymentTransactionData) states that the pay-
mentData has been charged through a transaction expressed as paymentTransac-
tionData. Each paymentTransactionData must be associated to exactly one pay-
mentData. However, one paymentData (i.e. a credit card) can relate to more than
one paymentTransactionData in a sense that it has been used for different pay-
ments.

• amountCharged(amountOfMoney, paymentTransactionData) states that the han-
dle expressed as paymentTransactionData has charged a certain amount of money.

• authorizedSaferpayAmount(saferpayTransactionHandle, amountOfMoney) the
relation is specifically designed for Saferpay atomic services. Since the services
provided by Saferpay split the payment process into authorization and actual pay-
ment, the payment must know the amount of money a previous authorisation has
allowed.

Instances

A concept may have an arbitrary number of instances associated to it. Instances can
either be explicitly defined in an ontology or they can exist outside the ontology in a
private database. An instance starts with the instance keyword, followed by an

3 Ontologies and Matchmaking 37

Listing 3.4. An instance example

instance JohnDoe memberOf person
firstName hasValue "John"
lastName hasValue "Doe"

Listing 3.5. An example of a relation instance

relationInstance hasDomainState(fooDomain, registeredState)

identifier, the memberOf keyword and the name of the concept to which the instance
belongs (all these definitions being optional). The instance definition can be followed
by the attribute values associated with the instance. Listing 3.4 is an example of an
instance declaration.

Besides specifying instances of concepts, it is also possible to specify instances of
relations. Such a relation instance definition starts with the relationInstance
keyword, followed by an identifier, the memberOf keyword and the name of the re-
lation to which the relation instance belongs. This definition is followed by the values
of the parameters associated with the relation instance. Listing 3.5 is an example of
an relation instance declaration.

The example ontology contains a limited set of instances. They have been pro-
vided for every concept having a finite set of extensions, where by extension we
understand every object that falls under the definition of the concept. This has been
the case for the following concepts:

• domainState, with four possible instances: uncheckedState, availableState, un-
availableState, registeredState

• validity, having only three instances: valid, invalid, unknown
• paymentState, with possible instances: completedState, abortedState, and un-

knownState
• creditCardType, with the instances: VisaType, MCType, AmexType, Discover-

Type, JCBType, DinersType

Axioms

An axiom definition starts with the keyword axiom, followed by (optionally) an
identifier, the definedBy keyword and a logical expression. Such axioms can be
used to refine the definitions already given in the conceptual syntax, e.g. the subcon-
cept and attribute definitions of concepts.

Our ontology defines several axioms describing equivalence or disjointedness
of concepts. The WSML-DL axiom in Listing 3.6 states that a generic domain is
equivalent to a domain with a generic Top-Level Domain extension.

38 E. Cimpian et al.

Listing 3.6. An axiom example

axiom GenericDomainNameDef
definedBy
?domain memberOf genericDomainName equivalent

?domain memberOf domainName
and exists ?tld (?domain[tld hasValue ?tld]

and ?tld memberOf genericTLD).

3.4 Service Ontologies

Domain ontologies serve the purpose of defining how a domain is formalised and
what situations are hold regarding the content that is to be communicated in a net-
work of Web services. However, such domain ontologies are not sufficient in order
to characterise what a service does, how it proceeds or what its implications are.

If we consider the definition of a Web service, we will find that there are several
issues we want to know about a Web service before we may consider it to be appro-
priate for a particular task. We want to know about technical issues, e.g. its way of
communication (e.g. HTTP), but we also want to know about the linkage between
technical issues and domain issues, e.g. how to communicate a specific domain re-
quest in the protocol (e.g. via a particularly defined interface providing parameters
for my domain need specifications), and we want to know about further implications
that the Web service may have, e.g. on my checking account or on the time I have to
wait until I get the desired result.

Handling these issues in a fully integrated framework is not possible if the seman-
tics of these technical and domain-specific functional and non-functional require-
ments is not specified in a common model. Ontologies for Web services appear here
as a natural solution in order to capture domain and technical needs together.

In the following sections, we will illustrate and substantiate this idea by the ex-
ample of WSMO, a concrete ontology for describing services in a fully integrated
framework that is tied together with exchangeable domain ontologies.

3.4.1 WSMO as Example for Service Ontologies

WSMO [163] provides ontological specifications for the core elements of SWS. In
fact, SWS aim at an integrated technology for the next generation of the Web by
combining Semantic Web technologies and Web services, thereby turning the Inter-
net from an information repository for human consumption into a world-wide system
for distributed Web computing. Therefore, appropriate frameworks for SWS need to
integrate the basic Web design principles, those defined for the Semantic Web, as
well as design principles for distributed, service oriented computing of the Web.
WSMO is therefore based on the following design principles:

3 Ontologies and Matchmaking 39

• Web Compliance: WSMO inherits the concept of URI for unique identification
of resources, it adopts the concept of namespaces, supports XML and other W3C
Web technology recommendations.

• Ontology-based: Ontologies—a widely accepted state-of-the-art representation
of knowledge—are used as the data model throughout WSMO.

• Strict Decoupling: WSMO resources are defined in isolation, each resource is
specified independently without regard to possible usage or interactions with
other resources).

• Centrality of Mediation: It addresses the handling of heterogeneities that natu-
rally arise in open environments; it can occur in terms of data, underlying ontol-
ogy, protocol or process.

• Ontological Role Separation: The underlying epistemology of WSMO differen-
tiates between the desires of users or clients and available services.

• Description versus Implementation: WSMO differentiates between the descrip-
tions of SWS elements (description) and executable technologies (implementa-
tion).

• Execution Semantics: In order to verify the WSMO specification, the formal ex-
ecution semantics of reference implementations like WSMX as well as other
WSMO-enabled systems provide the technical realisation of WSMO.

• Service versus Web service: A Web service is a computational entity which is
able (by invocation) to achieve a users goal, and a service in contrast is the actual
value provided by this invocation; WSMO is designed as a means to describe
the former and not to replace the functionality of the latter, i.e. WSMO provides
means to describe Web services that provide access to services.

The following text briefly outlines the conceptual model of WSMO. The elements
of the WSMO ontology are defined in a meta-meta-model language based on the
Meta Object Facility (MOF).13 In order to allow complete item descriptions, every
WSMO element is described by non-functional properties. These are based on the
Dublin Core (DC) Metadata Set [203] for generic information item descriptions, and
other service-specific properties related to the quality of service.14

Ontologies

Ontologies provide the formal semantics for the terminology used within all other
WSMO components. A set of non-functional properties are available for characteris-
ing ontologies; they usually include the DC Metadata elements. Imported ontologies
allow a modular approach for ontology design and can be used as long as no conflicts
need to be resolved between the ontologies. When importing ontologies in realistic
scenarios, some steps for aligning, merging and transforming imported ontologies
in order to resolve ontology mismatches are needed. For this reason ontology medi-
ators are used (ooMediators). Concepts constitute the basic elements of the agreed

13 http://www.omg.org/technology/documents/formal/mof.htm.
14 For a detailed description of all the elements defined in WSMO, we refer the reader to
[164].

40 E. Cimpian et al.

terminology for some problem domain. Relations are used in order to model inter-
dependencies between several concepts (respectively instances of these concepts);
functions are special relations, with a unary range and a n-ary domain (parameters
inherited from relation), where the range value is functionally dependent on the do-
main values, and instances are either defined explicitly or by a link to an instance
store, i.e., an external storage of instances and their values.

Web Services

WSMO provides service descriptions for describing services that are requested by
service requesters, provided by service providers, and agreed between service
providers and requesters. Within the service class the non-functional properties and
imported ontologies attributes play a role that is similar to that found in the ontology
class, with the addition of an extensible set of Web service-specific non-functional
properties. An extra type of mediator to deal with protocol and process related mis-
matches between Web services is also included.

The final two attributes define the two core WSMO notions for semantically
describing Web services: a capability which is a functional description of a Web
Service, describing constraints on the input and output of a service through the no-
tions of preconditions, assumptions, postconditions, and effects; and Web service
interfaces which specify how the service behaves in order to achieve its functional-
ity. A service interface consists of a choreography which describes the interface for
the client-service interaction required for service consumption, and an orchestration
which describes how the functionality of a Web Service is achieved by aggregating
other Web services.

Goals

A goal specifies the objectives that a client may have when consulting a Web Service,
describing aspects related to user desires with respect to the requested functional-
ity and behaviour. Ontologies are used as the semantically defined terminology for
goal specification. Goals model the user view in the Web service usage process and
therefore are a separate top level entity in WSMO. The requested capability in the
definition of a goal represents the functionality of the services the user would like
to have, and the requested interface represents the interface of the service the user
would like to have and interact with.

Mediators

The concept of mediation in WSMO addresses the handling of heterogeneities occur-
ring between elements that shall interoperate by resolving mismatches between dif-
ferent used terminologies (data level), on communicative behaviour between services
(protocol level), and on the business process level. A WSMO Mediator connects el-
ements and provides mediation facilities for resolving mismatches. The description
elements of a WSMO Mediator are its source and target elements, and the media-
tion service for resolving mismatches. WSMO defines different types of mediators

3 Ontologies and Matchmaking 41

for connecting the distinct WSMO elements: OO Mediators connect and mediate
heterogeneous ontologies, GG Mediators connect Goals, WG Mediators link Web
services to Goals, and WW Mediators connects interoperating Web services resolv-
ing mismatches between them.

An Example of a Semantic Service Specification

This section provides a concrete specification of one of the services in the book’s use
case scenario, namely the Paypal Direct Payment service. The above men-
tioned scenario involves a set of services: (1) domain checking services which ver-
ify if a certain domain is available for registration, (2) domain registration services
which can register a given domain, (3) credit card authorisation service, which ver-
ify and authorise credit card payments (4) payment services which provide payment
functionalities and finally (5) update name servers services which are responsible for
updating the name servers with name-IP mappings for the newly paid and registered
service.

The Paypal Direct Payment service, which is used in this section to ex-
emplify the semantic services modelling approach is a payment service. In an in-
formal way its functionality can be described as follows. The service processes a
credit card payment immediately, without any authorisation. It requires that all input
parameters are given, including the users’ IP address for tracing credit card fraud.

As described in Sect. 3.4.1, WSMO distinguishes between three aspects in a
service description namely: functional (i.e. capability)—what the service can do,
non-functional (i.e. non-functional properties)—annotations and quality of service
aspects and behavioural (i.e. interface)—how the functionality of the service can be
achieved in terms of interaction with the service (choreography) and as well in terms
of functionality required from the other Web services (orchestration). This section
exemplifies the first two aspects of a WSMO service description. The functional
(capability) specifications are provided using both WSML-Flight and WSML-DL,
with the purpose of underlining the differences in modelling for the two language
variants.

The general rules for writing WSML specifications apply as well to service speci-
fication. More precisely a WSML service specification has a header block containing
a variant specification and a namespace references blocks. The header block should
start with the wsmlVariant keyword, followed by an identifier for the WSML
variant. For WSML-Flight this is:

http://www.wsmo.org/wsml/wsml-syntax/wsml-flight

For WSML-DL this is:

http://www.wsmo.org/wsml/wsml-syntax/wsml-dl

The specification of the WSML variant is optional, but recommended, as it facili-
tates the work for tools. The next block, optional as well, is the namespace refer-
ences block. This block is preceded by the keyword namespace. Each namespace
reference, except the default namespace, consists of a namespace prefix and the IRI

42 E. Cimpian et al.

Listing 3.7. Paypal direct payment service header

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

namespace {_"https://asg-platform.org/dsc4isp#",
dO _"https://asg-platform.org/dsc4ispOntology#",
qosP _"https://asg-platform.org/dsc4isp/qosParameters#",
dc _"http://purl.org/dc/elements/1.1#"}

webService paypalDirectPaymentService
nfp

dc#title hasValue "Paypal direct payment service"
qosP#executionDuraton hasValue _double("0.4")
qosP#responseLatency hasValue _double("0.5")

endnfp
importsOntology {_"https://asg-platform.org/dsc4ispOntology",
_"https://asg-platform.org/dsc4isp/qosParameters#"}

which identifies the namespace. The default namespace does not contain a namespace
prefix. The Paypal Direct Payment service header is listed in Listing 3.7.

A service declaration starts with the keyword webService optionally followed
by an identifier. If no identifier is specified, the locator of the service serves as identi-
fier. The webService declaration might be followed by non-functional properties
block and other blocks for importing ontologies or use of mediators.

Non-functional Properties

Non-functional properties description of a service in WSML include both annota-
tions and quality of services properties. Annotations are usually specified using the
properties defined in the Dublin Core Metadata Element Set.15 In our particular ex-
ample, the dc#title element is used to specify the title of the service, information
which does not specify neither the functionality neither the behaviour of the service.
The other non-functional properties specify quality of service (QoS) values of the
services. The QoS notions are defined in a QoS ontology which is imported in the ser-
vice specification. Two QoS values are specified, for the Paypal Direct Payment ser-
vice namely the duration of the service invocation qosP#executionDuration
and the response latency of the service qosP#responseLatency.

Capability

In WSML, the capability of a Web service defines its functionality in terms of pre-
and postconditions, assumptions and effects. Only one capability is allowed. The
WSML-Flight description of the service capability is presented in Listing 3.8 and
the WSML-DL description of the same capability is presented in Listing 3.9.

15 http://dublincore.org/documents/dces/.

3 Ontologies and Matchmaking 43

Listing 3.8. Paypal direct payment service capability (WSML-Flight)

capability paypalDirectPaymentCapability
sharedVariables {?amount, ?card, ?tranId}
precondition
definedBy
?card memberOf dO#creditCard and
?contact memberOf dO#contact and
dO#creditCardOwner(?card, ?contact) and
?invoiceNumber memberOf dO#invoiceNumber and
?amount memberOf dO#amountOfMoney.

postcondition
definedBy
?tranID[dO#hasValidity hasValue ?validity] memberOf
dO#payPalTransactionId.

effect
definedBy
dO#paymentTransaction(?card, ?tranID)
and dO#amountCharged(?amount, ?tranID).

Listing 3.9. Paypal direct payment service capability (WSML-DL)

capability paypalDirectPaymentCapability
sharedVariables {?paymentReq, ?tranID}
precondition
definedBy

?paymentReq memberOf dO#PaymentRequest
and ?paymentReq[dO#paymentData hasValue ?creditCard]

and ?creditCard memberOf dO#CreditCard
and dO#creditCardOwner(?creditCard, ?contact)

and ?contact memberOf dO#Contact
and ?paymentReq[dO#invoiceNumber hasValue ?invoiceNr]

and ?invoiceNr memberOf dO#InvoiceNumber
and ?paymentReq[dO#amount hasValue ?amount]

and ?amount memberOf dO#amountOfMoney.
postcondition
definedBy
?tranID[dO#hasValidity hasValue ?validity] memberOf
dO#PayPalTransactionId.

effect
definedBy
dO#paymentTransaction(?card, ?tranID)
and dO#amountCharged(?amount, ?tranID).

A capability declaration starts with the keyword capability optionally fol-
lowed by an identifier. The capability declaration might be followed by non-
functional properties, imported ontologies, used mediators, and shared variables dec-
larations. In our examples only the shared variables sections are specified. These

44 E. Cimpian et al.

variables are implicitly all-quantified and their scope is the whole Web service capa-
bility.

The four major blocks of a capability description in WSML are the preconditions,
postconditions, assumptions and effects. They are all represented as logical axioms
and can be seen as conditions that are met in (1) information space, before (precon-
ditions) and after (postconditions) the execution of the service, and (2) world state,
before (assumptions) and after (effects) the execution of the service. In our example a
credit card, an invoice number and an amount are required to invoke the service. This
requirement should be valid before the execution of the service in the information
space and therefore it is modelled as a precondition. When finished, the service re-
turns a payPalTransactionId, no matter if the payment was successful or not.
This represents an item generated in the information space and therefore the previous
statement is modelled as a postcondition. In case of successful service invocation, the
associated validity object has a value of “valid”, else it will be set to “invalid”. Only
when payment was successful, the association amountCharged will express that
the credit card connected with the payPalTransactionId has been charged the
amount specified in the precondition. In this case something changed in the state of
the world after the execution of the service, thus it is modelled in the effect block.

The differences between the WSML-Flight and WSML-DL versions of the ser-
vice capability are relatively minor at a first look. However in the DL version a
payment request is used as core concept which groups the necessary data to initiate
a payment operation.

Please notice that the service descriptions provided in this section are relying on
the terminology provided by the domain ontology which was described in Sect. 3.3.

3.4.2 Related Work

OWL-S: OWL-based Web Service Ontology

OWL-S [125], part of the DAML program,16 is an OWL-based Web service on-
tology; it aims at providing building blocks for encoding rich semantic service de-
scriptions, in a way that builds naturally upon OWL. Very often it is referred to the
OWL-S ontology as a language for describing services, thus reflecting the fact that
it provides a vocabulary that can be used together with the other aspects of the OWL
to create service descriptions.

The OWL-S ontology mainly consists of three interrelated sub-ontologies, known
as the profile, process model, and grounding. The profile is used to express “what a
service does”, for purposes of advertising, constructing service requests, and match-
making; the process model describes “how it works”, to enable invocation, enact-
ment, composition, monitoring, and recovery; and the grounding maps the constructs
of the process model onto detailed specifications of message formats, protocols, and
so forth (normally expressed in WSDL). All these sub-ontologies are linked to the
top-level concept Service, which serves as an organisational point of reference for
declaring Web services.

16 http://www.daml.org.

3 Ontologies and Matchmaking 45

Although OWL-S was the first approach to SWS, its design was inappropriate
in some aspects. First, OWL-S is based on OWL; OWL was not developed with the
design rationale in mind to define the semantics of processes that require rich defi-
nitions of their functionality, thus inherently limiting the expressiveness of OWL-S.
Moreover, OWL-S inherits some of the drawbacks of OWL: lack of proper layering
between RDFS and the less expressive species of OWL and the lack of proper lay-
ering between OWL DL and OWL Lite on the one side and OWL Full on the other.
OWL-S provides the choice between several other languages, e.g. SWRL, KIF, etc.
By leaving the choice of the language to be used to the user, OWL-S contributes to
the interoperability problem, rather than solving it. In OWL-S, the interaction be-
tween the inputs and outputs, which have been specified as OWL classes, and the
logical expressions in the respective languages, is not clear. Furthermore, the logical
language used for the specification of Web service preconditions and postconditions
is an integral part of the language, thus the overall Web service description and the
logical expressions which specify the pre- and postconditions are connected for free.
Approaches such as WSMO and SWSF tackled such drawbacks in various ways.

SWSF: Semantic Web Services Framework

Semantic Web Services Framework (SWSF) [19] is one of the newest approaches
for Semantic Web Services, being proposed and promoted by Semantic Web Services
Language Committee (SWSLC)17 of the Semantic Web Services Initiative (SWSI).18

It is based on two major components: an ontology and the corresponding conceptual
model by which Web services can be described, called Semantic Web Services Ontol-
ogy (SWSO) and a language used to specify formal characterisations of Web services
concepts and descriptions called Semantic Web Services Language (SWSL).

SWSO presents a conceptual model for semantically describing Web services
and an axiomatisation, formal characterisation of this model given in one of the two
variants of SWSL: SWSL-FOL based on First Order Logic or SWSL-Rules based
on Logic programming. The resulting ontologies are called: FLOWS—First-Order
Logic Ontology for Web Services, which relies on First Order Logic semantics, and
ROWS—Rule Ontology for Web Services, which relies on Logic Programming se-
mantics. The development of SWSO was influenced by the OWL-S ontology and the
lessons learned from developing this ontology; it can be seen as an extension/re-
finement of OWL-S ontology with a special focus on providing interoperability
or semantics to existing standards in Web services area (e.g. Web Services Busi-
ness Process Execution Language (WS-BPEL), Web Services Description Language
(WSDL), etc.)

SWSL is a language for describing, in a formal way, Web services concepts and
descriptions of individual services. SWSL comes in two variants which are based
on two well-known formalisms: First-Order Logic and Logic Programming. The
two sub-languages are: SWSL-FOL and SWSL-Rules. The design of both languages

17 http://www.daml.org/services/swsl.
18 http://www.swsi.org.

46 E. Cimpian et al.

was driven by compliance with Web principles, like: usage of URIs, integration with
XML built-in types and XML-compatible namespaces and import mechanisms. Both
languages are layered languages where every layer includes a number of new con-
cepts that enhance the modelling power of the language.

IRS III: Internet Reasoning System

IRS-III [59] is a framework and implemented platform which acts as a broker me-
diating between the goals of a user or client and available deployed Web services.19

The IRS uses WSMO as its basic ontology and follows the WSMO design principles.
The overall framework of IRS is composed of three core components, which

communicate through SOAP:

• IRS Server: The server holds descriptions of Semantic Web Services at two dif-
ferent levels. A knowledge level description of components is represented inter-
nally in Operational Conceptual Modelling Language (OCML).20 Additionally,
two sets of mappings are used to connect the knowledge level descriptions to a
specific Web service.

• IRS Publisher: The publisher plays two roles in the IRS framework: it links Web
services to semantic descriptions within the IRS server, and it automatically gen-
erates a wrapper which allows standalone Lisp or Java code to be invoked as well
as a Web service through its WSDL description.

• IRS Client: A key feature of IRS is that Web service invocation is capability
driven. An IRS user simply asks for a task to be achieved and the server selects
and invokes an appropriate Web service.

WSDL-S: Web Service Semantics

WSDL-S [8] proposed a mechanism to augment the Web service functional descrip-
tions, as represented by WSDL, with semantics. This work is a refinement of an
initial proposal developed by the Meteor-S group, at the LSDIS Lab, Athens, Geor-
gia.

Starting from the assumption that a semantic model of the Web service already
exists, WSDL-S describes a mechanism to link this semantic model with the syntac-
tical functional description captured by WSDL. Using the extensibility elements of
WSDL, a set of annotations can be created to semantically describe the inputs, out-
puts, and the operation of a Web service. By this the semantic model is kept outside
WSDL, making the approach agnostic to any ontology representation language. The
advantage of such an approach is that it is an incremental approach, building on top
of an already existing standard and taking advantage the already existing expertise
and tool support. In addition the user can develop in WSDL in a compatible manner
both the semantic and operational level aspects of Web services. WSDL-S work is

19 http://kmi.open.ac.uk/projects/irs.
20 http://kmi.open.ac.uk/projects/ocml.

3 Ontologies and Matchmaking 47

guided by a set of principles, the most important of them being: building on existing
Web services’ standards, annotations being agnostic to the semantics representation
language, and support annotation of XML Schema data type.

SAWSDL: Semantic Annotations for WSDL and XML Schema

Standardisation of semantic Web services technologies in W3C is in early stages,
reflecting the relative youth of the research field. In 2004, the W3C started receiving
submissions for specifications for semantic descriptions of Web services (OWL-S,
WSMO and others). In June 2005, the W3C held a Workshop on Frameworks for
Semantics in Web Services,21 to organise a discussion on the proposed steps. The
workshop identified that there was a lot of disagreement on what Semantic Web Ser-
vices should do; yet there was consensus on the fact that semantics are necessary in
Web service descriptions, and that building on the existing Web Services Description
Language WSDL, as proposed by WSDL-S, would be a good start. In April 2006,
a working group was formed to standardise Semantic Annotations for WSDL,22

which resulted in a Recommendation (W3C standard) called “Semantic Annotations
for WSDL and XML Schema”, short name SAWSDL, published in August 2007
[66].

SAWSDL builds mainly on WSDL 2.0 (W3C Recommendation, June 2007), but
also supports the still prevalent WSDL 1.1. On the semantic side, SAWSDL is inde-
pendent of any ontology technology, assuming that semantic concepts can be identi-
fied by URIs. RDF and OWL from W3C are example technologies that can be used in
SAWSDL. Along with the SAWSDL specification, the working group has produced
a companion Usage Guide note,23 to provide more examples on how SAWSDL can
be used.

COWS: The Core Ontology of Web Services

The Core Ontology of Web services is an approach somewhat orthogonal to the work
described so far. It has been started with an analysis of OWL-S [130], which revealed
that OWL-S—in spite of its seminal role in the inception of Semantic Web services—
exhibited several ontological mistakes that would render the reuse and integration of
OWL-S into a broader perspective difficult if not impossible. For instance, a common
problem that would arise was that OWL-S was too ambiguous to lead to a sound
conceptual modelling of Web services by its users.

To resolve this issue a comprehensive analysis of a conceptualisation of soft-
ware, its embedding into a sound foundational ontology, i.e. DOLCE, and its use
for middleware management at large has been performed. The results have indicated
economic benefit of the use of semantics for means such as configuration [205].
However, COWS has not targeted yet the automatic composition of Semantic Web
services as demonstrated in this book.
21 http://www.w3.org/2005/01/ws-swsf-cfp.html.
22 http://www.w3.org/2002/ws/sawsdl.
23 http://www.w3.org/TR/sawsdl-guide.

48 E. Cimpian et al.

The corresponding analysis and ontology definitions of COWS and its founda-
tions may be found comprehensively in [146], the use with application servers and
Web services is demonstrated in [147], and the overall realisation is described in
[145].

3.5 Service Matchmaking

A common task in service oriented systems is the finding of services. Finding ser-
vices is important when building applications or creating processes as the services
implement the actual functionality.

Finding services is a difficult task without the existence of service and domain
ontologies (Sects. 3.3 and 3.4). Without these ontologies, services can only be identi-
fied by their name, their syntactical interface, and the textual documentation. In such
a case finding a service mostly relies on text search. Since natural language text is
informal, service names and documentations can be ambiguous.

In the book’s use case scenario, multiple different kinds of payment happen. First
of all the customers of Hostit have to pay for the hosting. Second, Hostit has
to pay for the usage of most partner services (e.g. domain registration). If a process
designer of Hostitwants to find a process to charge customers, several issues arise:

Is charging the same as payment? Does the payment service charge the customer
or is it used to pay for utilized services from other partners?

To sum up, finding services is difficult as service name and documentation do
not sufficiently describe the service and different terminologies allow for misunder-
standings. While a human can overcome these problems by asking a colleague or
calling the service provider, this is not possible if services are to be found during
run-time without human involvement. The computer cannot guess search terms to
find a service or understand the service documentation. It can also not ask some-
body for assistance (actually it can by crashing, but this not a desired behaviour). It
must always find the correct services. Without service ontologies, finding services at
run-time is limited to finding services implementing the exact same interface.

This limitation to matching based on purely syntactical features is not desirable.
Hardly two services share the same interface even if they implement the same func-
tionality. Services do not match syntactically as soon as their names differ or they
use different data representations (e.g.: Is a credit card just the credit card number or
does it include the validity date as well? Is the credit card number a number, a string,
or a string containing only digits?).

Here, service ontologies come into play. They can be used to describe the func-
tionality or capability of a service. Given this knowledge, a human process designer
can find services even if a pure text search would not have shown it. Also false posi-
tives are prohibited (e.g.: What would have happened in our example if each service’s
documentation contained a Payment Details section?). As the service and domain on-
tology define a shared terminology, misunderstandings are unlikely (except if there
are disputes about the meaning of the ontology concepts). Service ontologies also
allow for finding services at run-time as the functionality of each service is clearly

3 Ontologies and Matchmaking 49

specified. The computer knows whether a service matches or not. Consequently, this
task is called service matchmaking.

In the following we will detail the concept of service matchmaking by first de-
scribing different forms of matchmaking and afterwards demonstrating how service
matchmaking is actually an application of the aforementioned reasoning tasks.

3.5.1 Aspects of Service Matchmaking

Service matchmaking is the task of finding services for a given user request based
on their semantic service specification. A user request describes the requirements of
the user toward the service in a similar fashion as the semantic service specification
describes the functionality of a service. A request consists of an initial state describ-
ing the current state of ‘the world’ as well as available information, and a goal state
describing the intended result in terms of world state and information. Figure 3.4 il-
lustrates the matching. To qualify as a match, the precondition must match the initial
state of the request and the effect must match the goal state of the request. Precondi-
tion matching the initial state, means that in every situation expressed by the initial
state (e.g. if disjunction is used) the precondition is fulfilled (i.e. the service is in-
vocable). Correspondingly, effect matching the goal state means, that every possible
outcome of invoking the service fulfils the goal.

Actually, matching both the precondition and effect to the request is only one
form of matchmaking. It is most useful, if a service for a specific task is required or
if run-time binding to concrete services is performed (see Sect. 5.5). We call it service
matchmaking on capabilities as it matches against the full capability specification.
Other forms of matchmaking are useful as well. We can distinguish:

• Service matchmaking on preconditions
• Service matchmaking on effects
• Non-functional service matchmaking

The first two types are mainly of interest for run-time composition approaches
(Chap. 5) based on forward chaining (matchmaking on preconditions) or backward

Fig. 3.4. Matchmaking of user requests to semantic service specifications

50 E. Cimpian et al.

chaining (matchmaking on effects). When composing services automatically at run-
time, matchmaking on capabilities is seldom successful as we will not reach the
goal state with just one service. Hence, we need more elaborate selection strategies
that will determine which service to select. With forward chaining, matchmaking
finds all invocable services. Selection can then, for example, be done using heuris-
tics. Non-functional service matchmaking can be seen as an extension of capability
matchmaking. But as different mechanisms are used, it is mentioned here separately.
Non-functional properties describe aspects of the services like costs or required se-
curity features.

3.5.2 Implementing Matchmaking Using Reasoning

Reasoning is the mental process of looking for reasons to support beliefs, conclu-
sions, actions or feelings [108]. As a result of reasoning new facts, conclusions can
be derived given the initial premises. Humans are faced with the necessity of rea-
soning, and it is a natural question whether this act can be automated. Automated
reasoning is the study of Artificial Intelligence using the methods and techniques of
computations that automate the process of reasoning. The overall goal is to provide
high-level descriptions of ‘the world’ that can be effectively used to build intelligent
systems. This in turn, enables intelligent systems to infer implicit consequence of its
explicitly represented knowledge in an automated manner.

The World Wide Web can be seen as the largest knowledge base that has ever
existed. This global knowledge base is currently in a transition from a “base of un-
structured knowledge” to a “base of structured knowledge”. Thus the knowledge
representation and efficient automated reasoning are two critical success factors for
realizing Semantic Web and Semantic Web Services visions. Offering reasoning sup-
port for a Semantic Web Services Language is crucial for the usage and acceptance
of the language in the Semantic Web area. Reasoning allows, e.g. to check the con-
sistency of an ontology and of ontology elements and to build classifications of the
ontology objects.

In the rest of the section we present two different approaches for the service
matchmaking algorithm. The first approach is a service matchmaking algorithm based
on the capabilities of the services. The second approach is the service matchmaking
algorithm for service composition. They correspond to different phases in the Web
service composition process.

The first matchmaking approach is to locate the Web services that directly match
a user request in a given state. If no Web services are discovered, the composer can
construct a valid solution that fully satisfies the goal using the second approach,
which identifies all the executable services in a given state. More specifically, the
service composer can construct a solution by successively discovering the executable
services and virtually executing them until the state satisfies the goal.

Both matchmaking algorithms operate at the level of rich semantic description of
services. As presented in [103], discovery based on rich semantic descriptions takes
into consideration the dependence of outputs and effects of the service execution on

3 Ontologies and Matchmaking 51

the concrete input provided by the user when invoking the service. This is accom-
plished by considering for Web services the preconditions, assumptions, postcondi-
tions and effects, and for goals the state of ‘the world’ reached after the execution
of a service, thus only postconditions and effects. In this context, we have not made
explicit distinction between effects and postconditions. Together, they represent the
outcome of the service execution.

Matching based on Capabilities

The first algorithm for service matchmaking queries for the Web services executable
in the given state whose capabilities fully match a requester goal.

Of the four possible types of match described in [103], we are taking into con-
sideration only exact-match (the Web service description and the goal description
coincide) and plugin-match (the sets of objects that the Web service claims to deliver
is a superset of the set of objects that are relevant to the requester). The other two
cases (subsumes-match and intersection-match) are not considered valid matches in
this context, because the services cannot fully satisfy the goal.

We consider the states of ‘the world’ to be logical theories. A state of ‘the world’
comprises the set of registered ontologies and, optionally, an additional set of facts.
These facts can be given explicitly by means of an initial state. They can also be the
outcome of previous virtual execution of services, because the execution of a service
in a given state is considered to change the state of ‘the world’, resulting in an update
to the logical theory.

In order to determine if the capability of a service satisfies a requester’s goal, one
must reason about the resulting updates. Reasoning about updates raises the frame
problem. A solution to avoid the frame problem is offered by Transaction Logic,
an extension to First-order Logic that allows to specify the dynamics of knowledge
bases in a declarative way. The theoretical approach employing Transaction Logic
for Web service discovery that has been used as theoretical foundation for the imple-
mentation of this matchmaking algorithm can be found in [103].

The algorithm for service matchmaking based on capabilities implemented in our
prototype is presented in Listing 3.10. The ontologies, the services, and the goal are
assumed to be loaded prior to invocation of the matchmaking process. An appropriate
exception will be thrown in case an unregistered goal is passed as input (lines 7–9).

We consider a “stateless” functioning of the prototype, meaning that the relevant
state information is given as input to each state-dependent operation. The state is
loaded and respectively unloaded (lines 11, 40).

The available information sources at this point are:

• the set of ontologies referred by both goal and service descriptions
• the knowledge encoded in the state given as input to the matchmaking process
• the information that may be provided by the goal description itself

We select those registered services that are executable (lines 14–18). A service is
executable if there exists input information in the available information sources such
that the preconditions (what must be valid in order for the service to be executed)

52 E. Cimpian et al.

Listing 3.10. Matchmaking algorithm based on capabilities

algorithm serviceMatchmakingBasedOnCapabilities
input: state

goal
output: set of services with set of variable bindings

begin
if goal is not registered then
throw exception

endif

register state

for each registered service
if holds service.capability.preconditions then

for each variable binding
if not holds service.capability.effects(variable binding) and
not holds service.capability.postconditions(variablebinding)

then
insert service.capability.effects(variable binding),

service.capability.postconditions(variable binding)

if holds goal.capability.effects and
holds goal.capability.postconditions

then
add variablebinding to variable bindings set

endif

delete service.capability.effects(variable binding),
service.capability.postconditions(variablebinding)

endif
endfor

if not empty(variable bindings set) then
add (service, variable bindings set) to result set

endif
endif

endfor

unregister state

return result set
end

are fulfilled, while the effects and the postconditions (what the service guarantees to
hold after its execution) are not yet fulfilled. A variable binding is a set of

〈variable, value〉

3 Ontologies and Matchmaking 53

pairs which captures the input information for which the service preconditions hold.
More precisely, a variable binding is a complete set of bindings

〈x1, v1〉, 〈x2, v2〉, . . . , 〈xn, vn〉
where

x1, . . . , xn

are the variables occurring in the precondition, and

v1, . . . , vn

is a set of constants. There can be several variable bindings for the same service, and
all further tests on the service effects and postconditions will depend on a particular
variable binding (line 16).

Checking that the effects and the postconditions of the service are not satisfied for
the input that satisfies the preconditions is necessary due to the fact that in this context
we wish to allow only single execution of services for a given input. Note however
that a Web service can execute an arbitrary number of times, but with different input
information. The assumptions of a service are only assumed to hold, and therefore
not checked.

An executable service is considered a match if, for the input information, the
outcome of the service satisfies the outcome requested in the goal. We perform this
test by assuming the effects and the postconditions of the service for the input and
verifying if the effects and the postconditions of the goal hold in the resulting state
(lines 20–30). The set of matching services,and for each service all corresponding
variable bindings, is then returned (line 42).

Matching for Web Service Composition

The second matchmaking algorithm queries for the executable services in a given
state. Listing 3.11 presents the algorithm. The ontologies and the services are as-
sumed to be loaded in the reasoner prior to invocation of the matchmaking process.
The state is loaded and respectively unloaded (lines 6, 25).

The available information sources for this second algorithm are:

• the set of the ontologies referred by the service descriptions
• the knowledge encoded in the state given as input to the matchmaking process

A service is considered a match in the context of this algorithm if, for the input
information, the service is executable. As already defined, a service is executable
if there exists input information such that the preconditions are fulfilled (line 9),
while the effects and the postconditions are not yet fulfilled (lines 12, 13). The set of
executable services, and for each service all corresponding variable bindings, is then
returned (line 27).

54 E. Cimpian et al.

Listing 3.11. Matchmaking algorithm for service composition

algorithm serviceMatchmakingOnPreconditions
input: state
output: set of services with set of variable bindings

begin
register state

for each registered service
if holds service.capability.preconditions then

for each variable binding
if not holds service.capability.effects(variable binding) and

not holdsservice.capability.postconditions(variable binding)
then
add variablebinding to variable bindings set

endif
endfor

if not empty(variable bindings set) then
add (service,variable bindings set) to result set

endif
endif

endfor

unregister state

return result set
end

After discussing how services can be semantically specified and how a match-
making of services works, the next chapter will go into more details about how ex-
isting systems, components or applications can be service enabled.

4

Service Enabling

Steffi Donath, Thomas Hering, and Christoph Ringelstein

4.1 Overview and Motivation

Earlier sections introduced the concept of adaptive service provisioning, where se-
mantically described services are combined according to a semantic goal definition.
One of the basic assumptions for such a scenario is the availability of semantically
described service candidates, sometimes, collectively, denoted as service landscape.
The services usually must be derived from existing functional assets in the business
and IT environment. Therefore, the traditional issue of legacy integration still holds
for modern service oriented environments. Not only the technical gap between het-
erogeneous IT assets must be closed here, but also the creation, maintenance, and
registration of semantic descriptions must be performed.

The integration of existing functional assets in a semantic service provisioning
infrastructure, from now on described as service enabling, is a well-known problem
in industry. Past efforts like the Enterprise Application Integration (EAI) [50], Hub-
and-Spoke architectures, and the Java Business Integration (JBI) [189] specification
mainly focused on solving technical interoperability issues. For a semantic-enabled
service provisioning, it is also necessary to augment such integrated or newly cre-
ated services with semantic service specifications. This integration activity must be
accompanied by both tools support and a methodology, in order to coordinate and
reduce development and maintenance efforts.

The following chapter will discuss the problems and current research efforts for
service enabling in a semantic service environment. The technical integration is part
of the overall service enabling, but will be discussed separately as task of the service
infrastructure in Chap. 7. The following chapter focuses on the semi-automated gen-
eration of new service functionality or proxy implementations (Sect. 4.2), and on the
semantic description of such atomic service functionality (Sect. 4.3).

56 S. Donath et al.

4.2 Software Generation For Proxy Development

The need for flexible, automatic, and adaptive orchestration, provisioning and enact-
ment of services forces service developers to produce software that is parameterized
to fit various predefined and hard-to-predict operational contexts and configurations.
Many applications and services are not prepared for this kind of agility. Moreover,
due to the use of different programming languages, development environments and
libraries the customization and modification of service functionalities becomes com-
plicated.

One possibility to overcome this limitation is the utilization of software genera-
tion concepts.

4.2.1 Software Generation Concepts

Software generation is the automated or semi automated producing of source code in
a certain programming language. Possible concepts of software generation are Com-
ponent Based Software Development (CBSD), domain specific languages, software
product lines, and model driven software development:

CBSD suggests building especially large software systems by integrating already
existing functional assets, called software components. Clemens Szyperski, one of
the pioneers on the field of CBSD defines software component as a. . .

. . . unit of composition with contractually specified interface and explicit
context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third parties. [186]

The core idea of this approach is the re-use of common functionalities, which
are relevant for multiple software products. Instead of developing these common
parts for every software product from the scratch, CBSD suggests to develop such
common parts only once and build larger systems by assembling several common
parts.

Domain-Specific Language (DSL) refers to a concept that becomes more and
more omni-present in recent research and industrial activities. A review of scientific
and best-practice publications shows that there is a large spectrum of definitions for
the term itself. Common definitions contain a number of features for DSLs:

• DSLs are generic languages used not only by typical software developers, but
also by other kinds of engineers in a specific problem environment. DSLs need
not to be Turing-complete. Also quite simple specification or parametrization
languages can be seen as DSLs.

• DSLs are restricted to a domain, i.e. they are specialized languages and problem
oriented. Domains can be narrow or broad; they can be vertical as well as a
horizontal domains.

• DSLs provide domain abstractions, i.e. they implement concepts of the respective
domain and carry a strong expressive power.

4 Service Enabling 57

• DSLs provide domain-specific notations, i.e. the concrete syntax of a DSL is
often close to the syntax to the notations domain experts are familiar with.

The general idea of using a DSL rather than a general purpose programming or
description language is to raise the level of abstraction. Instead of expressing the
mental model of a solution in a programmers head in low-level-language constructs,
it should be possible to be more abstract in the sense of using constructs of the
‘natural’ language of the problem domain.

The third promising concept for automated and semi-automated software genera-
tion are Software Product Lines (SPL). They have emerged as an important approach
for software development in the last years. SPL focuses on the production of fami-
lies of related systems. For the creation of members of one family the same base of
development assets is used [144]. The objective of SPL is to increase software engi-
neering effectiveness by exploiting commonalities and managing systematically the
variations that exist between members of the software family. Those variations are
explicitly and formally represented, e.g. in terms of decision tables, feature diagrams
etc., so that they can be easily viewed, reasoned about and automatically or at least
semi-automatically processed [113].

A typical life cycle of a process within SPL consists of two major phases, do-
main engineering and application engineering. Domain engineering consists of the
sub phases domain analysis, domain design, and domain implementation. The appli-
cation engineering phase can be decomposed into application analysis, application
design, and application implementation. The overall goal of the domain engineering
phase is the creation of the product line infrastructure that consists of assets that are
needed for the engineering of concrete members of the product family, i.e. the appli-
cations. Within domain engineering the most important things to do are scoping of
the domain, creation of reusable requirements, definition a common architecture for
all systems of the domain, and implementation of reusable components that can be
used for the application creation.

Main objectives of all these approaches are reduction of software development
costs and a shortened development time, as well as the re-usability of the resulting
components.

4.2.2 Model Driven Approaches

Existing services are realized using different technologies. This hampers their inte-
gration. Also on the level of the service execution environment (see also Sect. 7),
different technologies are in use. A service enabling strategy should therefore sup-
port the separation of service functionality from the implementation technique, in
order to free the service developer as best as possible from infrastructure dependen-
cies. One possibility to achieve this goal is the utilization an Model-Driven Software
Development (MDSD) approach.

The aim of MDSD is the development of software from domain specific mod-
els. Key features of MDSD come from the field of domain engineering and software
product line engineering. The focus is domain analysis, meta modeling, model driven

58 S. Donath et al.

generation, template languages, domain-driven framework design, the principles for
agile software development, and the development and use of Open source infrastruc-
ture. The advantage of MDSD is providing the scalability, which is not inherent in
agile methodologies [24].

A fundamental concept of MDSD is the partial or complete generation of soft-
ware from models. These models have to describe the functionality of the software
accurate and expressive. For this concern the elements of the model need seman-
tics, which determine a particular run-time behaviour unambiguously [191]. This
can be achieved by use of formalized DSL. A DSL raises the level of abstraction.
It is intended to be understandable by domain experts and to be at the same time
also machine readable. A DSL is defined by a meta model. A meta model is an ab-
stract description of the language and model elements respectively and it contains
the rules for composing expressions using the elements of the language [24]. The
general MDSD advantages in contrast to typical programming languages are:

• The model language describes the domain and problem more precisely.
• Late binding to specific Application Programming Interface (API) and technolo-

gies by model transformations is possible.
• Better integration of domain and system analysts.
• Automated code generation instead of copy and paste reuse.
• Better integration of XML or other data exchange languages in the model lan-

guage.

One very prominent refinement of the ideas of MDSD approaches is Model-
Driven Architecture (MDA) by the Object Management Group (OMG). MDA has the
idea of separating the specification of the operation of a system from the details of
the way that the system uses the capabilities of its platform [99]. It has a clearer per-
ception than the MDSD approach. All DSLs within MDA will be defined with Meta
Object Facility (MOF). MOF is a meta meta model that was specified by the OMG
and it defines amongst others the Unified Modeling Language (UML) [191]. With the
UML the level of standardization was raised from application implementation to the
level of application design.

The goals of MDA are portability, interoperability, and re-usability by way of
architectural separation of concerns. The key assets of MDA are models for the de-
scription or specification of the system which will be developed. There are several
viewpoints on a system. A viewpoint is a technique for abstraction using a selected
set of architectural concepts and structuring rules in order to describe particular con-
cerns within that system [99]. One viewpoint is platform independent and for this
a Platform Independent Model (PIM) is designed with UML. A PIM specifies the
system or a part of a system independently of any particular specific platform or lan-
guage. A MDA model can have multiple levels of PIMs. The PIM on the base level is
used to express only business functionality and behaviour. On the next level the PIM
includes some aspects of technology (e.g. persistence, transactionality, security).

Another viewpoint is platform specific and can be provided by a Platform Spe-
cific Model (PSM) expressed in UML, too. A PSM combines the specifications in
the PIM with the details of a certain platform in order to specify how that system

4 Service Enabling 59

Fig. 4.1. Model transformation [99]

uses a particular type of platform (e.g. run time characteristics and configuration in-
formation). The gain of this approach is the possibility of implementation of several
platforms from one system and thus cost reduction.

Additionally, an important key part of MDA is model transformation. Model
transformation is the process of converting one model into another model using
mappings for transforming models. An MDA mapping provides specifications for
transformation of a PIM into a PSM for a particular platform. As a last step in MDA
the PSM will be transformed to the implementation code for execution of the sys-
tem.

4.2.3 Example Integration Process with MDA

Overview

This subsection describes one possible way to integrate existing Web services into
a certain environment by means of model driven approach. This integration process
allows dynamic integration of existing Web services. The goal of the integration
process is to enable the use of existing external service within the service oriented
environment. Although all Web services rely on XML and the use of SOAP as com-
munication mechanism, they may provide different semantics and different data for-
mats. Therefore, many service enabling activities end up in the development of proxy
services for the external functionality. The use of a service proxy allows the decou-
pling of external services from business processes, since relevant technical adapta-
tions (like protocol conversion or non-standardized SOAP extensions) are decoupled
from the business process enactment. It is also ensured that all external services—
meaning all proxy service interfaces used by the composition enactment—fulfil com-
mon demands. This becomes especially relevant with the concept of ontology-based

60 S. Donath et al.

service matchmaking (see also Sect. 3.5), which demands a mapping between in-
terface data types and ontology concepts. Therefore, all service proxies adopt the
functional interfaces to a common data type model, derived from a central ontol-
ogy.

In the following sections, an example integration process based on proxy gener-
ation is explained. The example refers to the book’s use case scenario described in
Sect. 2.2.

Prerequisites

For the generation of the proxy services the following prerequisites are necessary:

• Web Services Description Language (WSDL) file of the existing service to be
integrated

• Mapping information for external vs. ontology-derived data types
• Relevant information for the semantic description
• Information about non-functional properties
• Meta model

The WSDL file of the service which has to be registered is provided by the service
provider itself. The file contains information about the operations and the messages
of the service as well as binding information to a concrete network protocol and
message format to define an endpoint. Semantic aspects of the service are precondi-
tions, assumptions, postconditions, and effects. The precondition and postcondition
explain the state of the information space before and after service execution. Hence
these elements refer to input and output parameters of the service. An assumption
formulates the expected state of ‘the world’. If the usage of the service may result in
change of the state of ‘the world’, then the according outcome is called effect.

This semantic service specification is based on concepts described in ontologies,
as described in Sect. 3.4. A service provider or an integrator person therefore has to
specify what the service does, using the concepts and relations of the given ontol-
ogy. The service provider also has to associate each parameter defined in the WSDL
description with concepts from the ontology.

The WSDL file does not include non-functional properties like costs or account-
ing information. It therefore has to be specified by the service provider. A further pre-
requisite of the integration process is a proxy service meta model. This meta model
specifies the elements and their relationship to each other in a abstract manner.

Fig. 4.2. Parameter association using a mapping language

4 Service Enabling 61

Example of Proxy Generation

Starting point of the registration process is the existing service provider, making
available different kinds of information. This information is needed in order to cre-
ate both a semantic service specification as well as proxy that wraps the available
service for seamless integration. From all information which the provider has given
a mapping document is created. It contains all information that is needed for the cre-
ation of the semantic service specification as well as the PIM. The intermediate stage
of creating first a mapping document might seem redundant—the main idea is to de-
couple information from service specification and the service model. This allows an
independent design of the registration interface for services on the one hand and the
definition of service specification format and structure on the other hand.

Alternatively to creating a mapping document, one could think about an immedi-
ate generation of service specification and platform independent service model from
the provider information. The output would be a XML Metadata Interchange (XMI)
file. For development purposes it seems reasonable to perform an additional step
because the mapping document will be much better human-readable than a XMI
representation of a service model.

The service composition enactment has to be able to interact with registered ser-
vices. This interaction is typically based on message exchange, for example with
SOAP in the case of Web service technology. However, there is a gap which has to
bridged between the explicit semantics within the platform and the implicit seman-
tics of a service description. Therefore, a formal mapping between the operations
and data types within the platform, and the methods and data types of the service
is needed (see Sect. 3). Within the platform, the semantics of entities are described
using ontology concepts, relations, and rules. On the other hand the existing ser-
vice is functionally described by WSDL, which contains only technical interface
descriptions. The therefore needed transformation has to be defined by using some
conventions:

• A semantic concept is mapped on a XML element with the concepts name.
• Each semantic concept’s property is mapped on a XML sub element.

Listing 4.1 shows the possible structure of such a mapping document. It contains
a grounding for every data type in the WSDL file, a grounding for every operation of
the WSDL file and information about non-functional properties as specified by the
service provider.

Main information source for the creation of the mapping document is the WSDL
file provided by the service provider. The abstract part of a WSDL description con-
sists of message types and the operations of the service interface (see also Sect. 7.4).
In the mapping document the information regarding data types is gathered in the
<DataTypes> section. A WSDL type is referenced using a <WSDLElement>
element as child node of <DataTypeGrounding>. The operations of a service
are described in the <Operation> section. The information for a particular opera-
tion (embraced by a <Op> tag) that can be collected automatically is the referenced
operation in the WSDL description (<WSDLOperation>) and the parameters it is

62 S. Donath et al.

Listing 4.1. General structure of the mapping document

<RegDoc>

<DataTypes>

<DataTypeGrounding id="...">

...

</DataTypeGrounding>

</DataTypes>

<Operations>

<Op id="...">

<Grounding>...</Grounding>

...

</Op>

</Operations>

<NonFunctionalProperties>

...

</NonFunctionalProperties>

</RegDoc>

comprised of (<Parameter>). This mapping file syntax is one possible example—
the particular design mainly depends on the amount of available information.

As aforementioned, data types defined in a WSDL file have to be mapped
to an ontology concept within one of the developed domain ontologies.
Within the <DataTypes> section, a single data type is grounded using a
<DataTypeGrounding> element. Such an element contains an id attribute so
that it can be identified when an operation refers to it as one of its input or output
parameters.

Besides the reference to a WSDL data type, a description document also has
to state the corresponding ontology concept (<OntoConcept>) for a complete
grounding. The linkage between these two elements can only be performed man-
ually by the service provider during the registration process because the semantics
of the existing service that have been implicit up to this point are only known to the
provider.

It cannot be assumed that for every data type an exactly fitting ontology concept
can be identified. In most of the cases, a transformation (<Transformation>)
will be necessary to map the structure of the WSDL data type to the structure of
the according ontology concept. Parts of this transformation can be generated auto-
matically. After data type and concept have been specified by the provider it can be
inferred that these elements represent source and target of the transformation. Yet the
actual mapping between structures has to be specified by the provider. To express this
transformation a transformation language is needed. Because this transformation is
of pure syntactical nature, the eXtensible Stylesheet Language (XSL) transformation
language is an obvious candidate. Listing 4.2 shows the <DataTypes> section of
an exemplified description document, related to the Web Services Modeling Ontology
(WSMO) ontology standards (see also Sect. 3.4.1).

4 Service Enabling 63

After collecting all required provider information the mapping document can be
created automatically. In order to support automated generation an XML-Schema for
the mapping document is necessary. Listing 4.3 shows an example.

Listing 4.2. Data type grounding in the mapping document

<DataTypes>

<DataTypeGrounding id="dtg01">

<WSDLElement>

"path to WSDL file" #phoneNumber

</WSDLElement>

<Transformation>

PhoneNumberTransformation.xsl

</Transformation>

<OntoConcept>

"path to communication-ontology WSML file" #phoneNumber

</OntoConcept>

</DataTypeGrounding>

<DataTypeGrounding id="dtg02">

<WSDLElement>

"path to WSDL file" #Name

</WSDLElement>

<Transformation>

"ProviderTransformation.xsl" #provider

</Transformation>

<OntoConcept>

"path to participant-ontology WSML file" #provider

</OntoConcept>

</DataTypeGrounding>

</DataTypes>

Listing 4.3. XML Schema of the registration document

<?xml version=’1.0’ encoding=’UTF-8’?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Accounting" type="xsd:string"/>

<xsd:element name="Assumption" type="xsd:string"/>

<xsd:element name="Effect" type="xsd:string"/>

<xsd:element name="OntoConcept" type="xsd:string"/>

<xsd:element name="Parameter" type="xsd:string"/>

<xsd:element name="Security" type="xsd:string"/>

<xsd:element name="Transformation" type="xsd:string"/>

<xsd:element name="WSDLElement" type="xsd:string"/>

<xsd:element name="WSDLOperation" type="xsd:string"/>

<xsd:complexType name="DataTypeGroundingType">

<xsd:sequence>

<xsd:element ref="WSDLElement" />

<xsd:element ref="Transformation" />

64 S. Donath et al.

<xsd:element ref="OntoConcept" />

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string" use="required" />

</xsd:complexType>

<xsd:complexType name="DataTypesType">

<xsd:sequence>

<xsd:element name="DataTypeGrounding"

type="DataTypeGroundingType"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="GroundingType">

<xsd:sequence>

<xsd:element ref="WSDLOperation"/>

<xsd:element ref="Assumption"/>

<xsd:element ref="Effect"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="OpType" maxOccurs="unbounded">

<xsd:sequence>

<xsd:element name="Grounding" type="GroundingType"/>

<xsd:element ref="Parameter" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" use="required" type="xsd:string" />

</xsd:complexType>

<xsd:complexType name="OperationsType">

<xsd:sequence>

<xsd:element name="Op" type="OpType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="NonFunctionalPropertiesType">

<xsd:sequence>

<xsd:element ref="Accounting"/>

<xsd:element ref="Security"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="RegDoc">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="DataTypes" type="DataTypesType"/>

<xsd:element name="Operations" type="OperationsType"/>

<xsd:element name="NonFunctionalProperties"

type="NonFunctionalPropertiesType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

4 Service Enabling 65

Listing 4.4. PIM fragment for a proxy service

<?xml version="1.0" encoding="UTF-8" ?>

<ServiceMetaModelInstanceProxyServicePIM >

<metadata dc_title="GetProviderService" dc_creator="" />

<interface>

<operation signature="getProvider" visibility="public">

<parameter parameterName="country" domain="Telecommunication"

ontology="communication" concept="telephoneNumber"

attribute="countryCode" ofType="string" />

<block precondition="’P:userCode, P:nwCode’:string"

postcondition="’N:string, N:parameter,

QueryX:getProvider[name->N],

providerOf(QueryX, P)’:string" />

</operation>

</interface>

</ServiceMetaModelInstance:ProxyServicePIM>

The mapping document forms the basis for the automated generation of a proxy
service. Based on the ontology, the semantic service specification will be generated,
using the information from the mapping document. The generated service specifi-
cation has to be registered in a service registry, which contains all available service
specifications.

The next step in the registration process is the creation of the proxy service
model. It is derived from the proxy service meta model and contains the informa-
tion which the service provider handed in. Additionally, the service model contains
data from the WSDL file. Since the service model is completely independent of any
platform, it can be termed PIM. Listing 4.4 shows a partial example.

According to the OMG MDA approach, the PIM has to be transformed to a PSM.
This happens by enriching the PIM information with details regarding the middle-
ware technology utilized in the service infrastructure (see Chap. 7). One example
is the Enterprise Java Bean (EJB) component model as the target platform, which
demands the consideration of several packaging and deployment rules. Furthermore,
the PSM is enriched with information from the WSDL file such as the endpoint and
protocol binding information. Listing 4.5 shows a small part of such a PSM in XMI
format, explaining the difference to a PIM.

The PSM than can be easily transformed into code. Listing 4.6 shows a gener-
ated wrapper for an existing service, which could be deployed to a Java Platform
Enterprise Edition (Java EE) service architecture (see also Fig. 4.3).

The result of the integration process is a proxy service that represents an ontology-
compliant wrapper for the existing service within the platform. The proxy service in
the example is realized as a stateless session bean component, which is deployable as
Java EE application. Figure 4.4 shows the proxy service session bean in an according
service infrastructure.

66 S. Donath et al.

Listing 4.5. PSM fragment for a proxy service

<?xml version="1.0" encoding="UTF-8"?>

<ProxyServicePSM:ServiceEJB

xmlns:ProxyServicePSM="http://example-platform.org/metamodel/psm/"

xmlns:xmi="http://www.omg.org/XMI" xmi:version="2.0"

className="GetProviderService">

<businessMethod methodName="getProvider"

BusinessLogic="boolean success = false;

string country= phone.getCountryCode();

...">

</businessMethod>

<descriptor>

<serviceRef serviceRefName="services/getProviderService"

serviceInterface="javax.xml.rpc.Service"

wsdlFile="META-INF/wsdl/getProvider.wsdl"

jaxrpcMappingFile="META-INF/mapping.xml"

serviceQname="external:GetProviderService"/>

</descriptor>

<wsdl serviceName="GetProviderService" portName="ProviderPort"

wsdlURI="..."/>

</ProxyServicePSM:ServiceEJB>

Listing 4.6. Example for a generated proxy implementation [96]

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

public class GetProviderServiceProxyBean implements SessionBean {

public TelephoneProvider getProvider(int countryCode,

int networkCode,

int userCode) {

... // The business logic code

return telephoneProvider;

}

public void ejbCreate(){}

public void setSessionContext(SessionContext ctx) {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbLoad() {}

public void ejbStore() {}

}

4 Service Enabling 67

Fig. 4.3. Example for a proxy service architecture

Fig. 4.4. Deployed proxy in service infrastructure [96]

4.3 Semantic Specification of Existing Services

Integrating existing services into a semantic service provisioning platform requires
that the services are enriched with semantic descriptions. The semantic specification
should include the mapping of the used data types from input and output messages
to ontology concepts, the specification of the service functionality through precon-
ditions and effects, and the specification of the non-functional properties of service
operations.

Specifications for service functionalities are typically developed by the engineers
that integrate existing services into the provisioning platform. In most cases, the in-
ternals of the service functionality (like functional behaviour, error conditions, de-
manded input data) are unknown to the engineer who does the integration. This is
reasoned by a lack of behavioural description in typical interface languages, but also
by the fact that the integration engineer is typically not a domain expert for the par-
ticular utilized service. Figure 4.5 depicts the process of specification [161] for the
integration engineer.

The first integration step is the standardized description of the non-semantic char-
acteristics of an external functionality. This is a typical development task, which is
meanwhile supported by tools and development environments. In interface-driven

68 S. Donath et al.

Fig. 4.5. The semantic annotation process

Listing 4.7. WSDL information of an example service

...

<service name="PaymentService">

<documentation> This Web services ... </documentation>

<port name=" PaymentServicePort"

binding="tns: PaymentServiceBinding">

<soap:address location="http://example.org/payment"/>

</port>

...

middleware systems, like Web services and CORBA, it can be expected that acces-
sible functionalities provide also an according functional interface description. For
the typical usage of Web service technology, the interface description is realized by
a WSDL file (see Listing 4.7). In many cases, such a file was already created by
the service provider and can simply be accessed via the same URL as the Web ser-
vice.

The WSDL file mainly provides technical information for the SOAP middleware
(see also Sect. 7.4), like message encoding, defined data types and relevant access
policies. However, to gain the required information about the functionality of a Web
service—which forms the base for the semantic description—the engineer needs to
mine different information sources. The most efficient sources are the source code,
the interface descriptions of the operations of the service (as in Listing 4.8), and the
documentation (as in Listing 4.9).

The different sources vary in quality, detail level, and preciseness. In addition,
not all of those sources contain information about all service properties. The fol-
lowing list gives a short overview about some sources and analyses the contained
information:

4 Service Enabling 69

Listing 4.8. API description of the example service

Direct Payment Request Format

The following table lists all allowed name-value pairs that

must or can be used in a direct payment request:

Name Description

payerName The name of the payer. The format is:

"LastName, FirstName"

payerAccountID If credit card payment is chosen, this must

be the payer credit card number. If money

order payment is chosen this parameter must

be empty or skipped.

...

Listing 4.9. Documentation of the example service

Direct Payment requests submit all payment information to the

Payment Service and receive in return a payment identifica-

tion number. The Payment is executed by the payment

service provider.

A list of all needed and optional parameters of direct pay-

ment requests are listed in the Direct Payment Request Format

description.

Source code: From the source code of an service implementation, most information
about its operations could be derived. Especially information about its function-
ality, its preconditions, and its effects is extractable from source code.

Documentation: The documentation of an service is one of the most common in-
formation sources. However the quality of the contained information highly de-
pends on the preciseness of the documentation. This is because of the circum-
stance that documentations are generally written in natural language and thus not
formalized in a machine-understandable manner. Hence the information mining
must be done manually.

API description: An API description contains explanations of the interfaces or func-
tionality of the service operations. The explanation contains a signature, which
is written by means of a concrete or pseudo programming language, and a nat-
ural language explanation. An API description is typically more detailed than
the full-text documentation, but the natural language parts share the same inter-
pretation problem.

Software specifications: During the software engineering process of the Web service
several kinds of software specifications are created, e.g. UML-diagrams. Most
of these sources provide the same kind of information as the API descriptions.

Source code comments: In the source code, the contained comments are another
source of information. Similar to API descriptions, these comments often de-
scribe the interface or functionality of single operations. Because comments are
generally written in natural language, they also share the interpretation problem.

70 S. Donath et al.

In addition, like the source code itself they are often not accessible by service
requesters.

Contracts: A further information source are contracts, like service level agreements,
but also general contracts like end-user level agreements. They may contain in-
formation about legal usage conditions, usage costs, etc. Because they are also
written in natural language, gaining information from contracts has the same
problems as using documentations.

Background knowledge: Many different kinds of technical background knowledge
regarding utilized services might exist. Examples are knowledge about the tech-
nical realization of utilized standards, knowledge about the application domain,
or important judicial aspects. All such knowledge is useful to specify resulting
service properties and to reduce initial specification efforts.

Based on such different information sources, the purely technical interface de-
scription can be extended by semantically relevant information, collected from dif-
ferent and only human-readable resources. The challenging next step is now to move
these informal descriptions into a formal semantic specification.

4.3.1 Semantic Service Classification

The second step after the relevant information gathering is the semantic annotation
of the service, based on the functional interface description. The result of this step
is called a semantic service specification. As for the non-semantic description, var-
ious pieces of information are required to annotate the service. The mainly relevant
information source are the service ontology and various relevant domain ontologies.

The semantic specification itself can be divided into two major steps: the seman-
tic grounding specification and the semantic service specification.

Fundamental for the semantic specification is the classification of the service.
The classification is reached by assigning the service to a specific domain (e.g. Pay-
ment, Logistic, etc.). For the Web service technology, tools like ASSAM [86] support
the classification task by proposing categories basing on WSDL descriptions. The
domain of the service identifies the associated domain ontology, which is required
for the semantic annotation. If no suitable domain ontology exists, the engineer has
to define a new one (see Sect. 3.3). Once the domain ontology is chosen, the engineer
is able to connect the description of the Web service with concepts defined in the do-
main ontology. Specifically, the interface description is connected with ontology to
specify the semantics of data types and parameters.

This task can be partly supported by tools. For instance, the names, parameters,
and parameter types of the operations can be extracted automatically from the WSDL
description. However the mapping to the related concepts has to be done manually,
with tools like the OntoMat-Service-Browser [7]. They support the engineer by pro-
viding a graphical user interface for connecting ontology concepts with the metadata
describing the Web service. The result of this step is the semantic grounding specifi-
cation, the parts of preconditions and effects that specify input and output parameters
(see also Sect. 3.4.1).

4 Service Enabling 71

After the specification of the semantic grounding the functionality and the pro-
tocol needs to be specified. Parts of these are already specified implicitly as part of
the grounding specification, like the input parameters. In sum, “all parts of the pro-
tocol and the functionality that can be derived from the data flow can be specified
implicitly” [161]. The rest of the semantics need to be specified by means of pre-
and post-conditions, assumptions and effects. The specification of those is a very
complex task and must be done by the engineer manually.

The last step is to semantically specify the non-functional properties of the ser-
vice. Depending on the complexity, non-functional properties can be specified auto-
matically (e.g. name of the service) or need to be specified manually (e.g. Quality
of Service (QoS) properties). Information about the non-functional properties can be
extracted from all the information sources introduced earlier.

5

Service Composition and Binding

Marek Kowalkiewicz, Andre Ludwig, Harald Meyer, Jan Schaffner,
Christian Stamber, and Sebastian Stein

5.1 Overview and Motivation

Service composition enables the creation of services previously unavailable through
the aggregation of existing services. The result is called a service composition. Ex-
posing a service composition as a service, the result is called a composed service. It
can be distinguished from atomic services. Service composition approaches can be
differentiated along two axes: point in time of composition and degree of automation.
With design-time and run-time we can identify two different points in time for doing
a composition. Additionally we can distinguish between three different degrees of
automation: manual, assisted, and automated service composition.

Using design-time composition, the composition is created before the system
goes productive. This often happens during the development phase of an application
or system. Furthermore, design-time compositions are usually indented to be re-used
many times, which means that they have to be designed in such a way that they
are able to handle differences in the various requests they are used for. In contrast,
run-time created compositions are usually intended to be throw-away compositions.
Which means that they are created for one request, optimised for this request, and
later thrown away after the enactment of the request.

Distinguishing different degrees of automation is not as simple, since the bor-
ders between manual, assisted, and automated compositions are blurred. In manual
composition, a human process designer creates the composition. In assisted com-
position, an advanced modelling tool supports him in doing this activity. Finally, in
automated composition the tool creates the composition automatically. The distinc-
tion between these three categories is blurred at some points, because the following
questions arise: If a human checks the correctness of the composition afterwards, are
we still talking about an automated composition or is this only an assisted composi-
tion? On the other hand, how many features must a modelling tool support in order
to still be characterised as supporting assisted compositions?

74 M. Kowalkiewicz et al.

While giving a detailed and well elaborated answer to these questions may be
interesting for academia, we will use a pragmatic criterion to distinguish the com-
positions. If typically no human being sees a created composition, it is automated,
if a non-automated approach supports the three mixed-initiative features (which will
be presented in Sect. 5.3) it is an assisted composition. Otherwise it is a manual
composition.

The upcoming sections will discuss the various possibilities of constructing ser-
vice compositions. Starting with Sect. 5.2, we will give a brief overview on how
manual service composition works and what the resulting artefacts of such a compo-
sition usually are. Approaches to assist the manual service composition task will be
discussed and presented in Sect. 5.3. Basing on this, we will then discuss in Sect. 5.4
the challenges of dynamic service environments and how these challenges can be
addressed with automated service composition. Finally, we will discuss in Sect. 5.5
different service binding strategies based on service selection and negotiation regard-
ing non-functional properties of services. These last two sections, namely Sects. 5.4
and 5.5, explain in detail how the Planning Sub-Cycle and the Binding Sub-Cycle
of our proposed service delivery life-cycle, as shown in Fig. 2.6 on page 32, can be
implemented in an adaptive service provision platform. To provide a broad perspec-
tive on current research in the area of service composition and binding, Sect. 5.6
introduces service composition and binding as developed in the Integrated Project
SUPER, supported by the EU in the Sixth Framework Programme.

5.2 Manual Composition

Manual, design time composition is currently the prevalent approach to perform ser-
vice composition in industry. A composition is created by a process designer con-
taining all the necessary activities to reach the goal, their ordering, the data flow
between them, and organisational information, if the composition contains human
activities. Most of the time, the process created by the process designer is not already
executable. It will lack the necessary information about which services to invoke to
achieve which activity, and the data flow is not detailed enough to deal with the re-
quired transformations to map the output of one service into the input of another
one. Performing these tasks and so mapping of the business process to the actual IT
infrastructure is the job of the process engineer. His role is to find suitable services
for the activities. To do so, it might be necessary to change the process structure. For
example one activity can only be achieved by several services, or one service can
achieve multiple activities.

In the following, we will show which approaches the process designer and re-
spectively the process engineer can use today. Before we go into details of these
approaches, we will elaborate the above mentioned methodology in more details.

5.2.1 Methodology

Calling the following steps a methodology is quite ambitious. A much more sophis-
ticated methodology for developing service based applications is shown in Sect. 8.1.

5 Service Composition and Binding 75

The main idea behind showing this methodology is to make the separation between
process designer and process engineer clearer and hence explain why one approach
will later be characterised as a graphical notation and hence of importance for the
process designer and why another approach is characterised as a composition lan-
guage and hence of primary interest for the process engineer. Another reason why
we present this methodology here is because it helps us later to motivate assisted
and automated composition by showing which tasks can be automated. Creating a
service composition includes the following steps:

1. identifying the goal of the composition,
2. selecting services,
3. ordering services correctly (control and data flow), and
4. checking whether the composition is correct.

Let us have a look at an example from the use case scenario in Sect. 2.2, to
demonstrate what happens in each of these steps. We want to register a domain
including web space and a hosted e-mail server. The first step is quite simple. Of
course, the goal of the composition is to register a domain and to set up web space
and the hosted e-mail server. As we also want to get paid, another part of the goal of
the composition is that the user has to pay for the provided services.

The next step is to select the required services: a domain registration service,
services to set up the web space and the e-mail server, and a payment service. A first
version of the resulting process might look like Fig. 5.1.

To model the data flow of this process, we need to identify the input and output of
each service. The domain registration service expects a domain name and name and
address of a person to whom the domain should be registered. Its output indicates
whether domain registration was successful or not. The payment service expects the
payment details (credit card number, credit card validity date and owner) and outputs
a receipt. Finally, the web space and mail server creation services expect the user
account as well as the domain name for which they should be set up. They output
details about the created web space and mail server. Looking at these inputs and
outputs of the used services, we can deduce that in order to invoke the composition
we need to provide:

• a domain name,
• the name and address of the person registering the domain,

Fig. 5.1. First version of the modelled process

76 M. Kowalkiewicz et al.

Fig. 5.2. Second version of the modelled process

• the payment details,
• a user account.

Where should the user account come from? A new customer will normally not
have an user account. Hence, the composition is incomplete. Another issue is what
happens if the domain has already been registered. Depending on the implementation
details of the enactment engine and the domain registration service, the composition
will either be aborted with a cryptic error message or will continue to reach an un-
desired state (customer has paid but the domain has not been registered). The second
version of the composition depicted in Fig. 5.2 is an attempt to solve these prob-
lems. Before creating web space and mail server, the account is created and in the
beginning we check whether the domain is available or not.

The problem of an already registered domain is not solved completely. Some-
body could register the domain after we checked its availability. To prevent this, we
would need to run the whole composition as one transaction. But as at least some
of the services are external, distributed transaction management is required. While
standardisation approaches for distributed transactions of Web services exist, this is
outside the scope of this book.

5.2.2 Graphical Notations for the Process Designer

The main job of the process designer is to identify the processes of a company and
model them. It is his task to foster discussion about them, to make process optimisa-
tion or outsourcing possible, and to enable their automation. Hence, the result of the
process designer’s work needs to be an understandable, concise, and correct model of
the processes. Choosing the right modelling language or graphical notation that can
be understood by all stakeholders is crucial. Developing better process modelling
languages and the question what is the right modelling language has been an im-
portant point of discussion in research, e.g. [159]. Prominent examples for process
modelling languages include Business Process Management Notation (BPMN) (as
seen in Figs. 5.1 and 5.2), UML activity diagrams or Event-Driven Process Chains
(EPC)’s. An extensive overview of modelling languages is given in [204].

5 Service Composition and Binding 77

5.2.3 Composition Languages for the Process Engineer

A composition language describes the actually executable processes. Hence, they
are used by process engineers to create the executable process out of the modelled
processes by the process designer.

Today, the predominant composition language in service oriented systems is Web
Services Business Process Execution Language (WS-BPEL) [149]. Recently, the ver-
sion 2.0 of the language has been released providing extensions and clarifications
to version 1.1. The development of WS-BPEL 2.0 was triggered by the transfer of
the specification to the Organization for the Advancement of Structured Information
Standards (OASIS). Previously, WS-BPEL (at that time also known as BPEL4WS)
was developed by several vendors including IBM, Microsoft, and SAP. This effort
originated from two previous efforts: XLang by Microsoft and the Web Services Flow
Language (WSFL) by IBM.

These origins explain some of the specifics of the WS-BPEL control flow model.
As XLang supports composition in a block-structured way and WSFL in a graph-
structured way, it was decided that WS-BPEL should support both. In the following,
we will give a brief overview of WS-BPEL constructs. For a more detailed descrip-
tion we refer you to the WS-BPEL language specification [149] and the WS-BPEL
primer [150]. To describe the control flow in a block-structured way, WS-BPEL sup-
ports structured activities:

• sequence: execute contained activities sequentially;
• if-else: execute either one or the other activity;
• while, repeatUntil: loop based on a condition, with while the condition is checked

before and with repeatUntil afterwards;
• forEach: loop a fixed number of times; a sequential and a parallel variant exist;
• flow: execute contained activities in parallel.

All these structured activities can themselves contain structured or atomic activities.
To support graph-structured compositions a flow activity may contain links. A link
provides an ordering between a source and a target activity. The most important
atomic activities in WS-BPEL are of course the Web service activities to send and
receive messages:

• receive a message from an external partner;
• invoke a service provided by an external partner;
• reply to a message received previously.

A receive activity is always the first activity in a WS-BPEL process creating the
process instance and receiving the input data. Typically a service ends with a reply
activity, returning the process result to the partner who initiated the process. Fig-
ure 5.3 shows a summary of atomic and structured WS-BPEL activities.

One important aspect of an executable composition is the data flow. Services can
only work correctly if invoked with the correct data. Getting the correct data is not
trivial. The output data (or part of it) of a service is typically the input data (or part
of it) of another service. This means that data needs to be extracted and recombined.

78 M. Kowalkiewicz et al.

Fig. 5.3. Structured and atomic WS-BPEL activities

As WS-BPEL composes Web services, all the data are XML artefacts. Accordingly,
XPath is used to extract data from service output to be inserted into the input data of
another service.

As the services invoked and provided by a WS-BPEL process are Web services,
the integration with Web Services Description Language (WSDL) is crucial. The key
point for the integration is the WS-BPEL concept of partner links and part link types.
A Web service activity in a WS-BPEL process references a partner link and a Web
service operation name. The partner link is an instance of a partner link type and a
partner link type has two roles referencing the port type publishing the operation.
The link to a concrete service is typically done using a WS-Addressing endpoint
reference in the partner link. All these relations are displayed in Fig. 5.4.

WS-BPEL itself is limited as it only allows for the composition of Web service
interactions. Hence, several extensions were proposed to enhance its use cases:

• BPELJ [20] allows for in-lined Java constructs in a WS-BPEL process for e.g.
loop and branching conditions or variable assignment;

• BPEL4People [6] together with WS-HumanTask [5] extends WS-BPEL by hu-
man tasks;

• BPEL-SPE [93] enables the invocation of WS-BPEL processes as sub processes
of another WS-BPEL process;

• BPEL4Chor [55] uses WS-BPEL to model choreographies;
• BPELLight [143] is a light-weight version of WS-BPEL without the dependency

on WSDL.

None of the above mentioned extensions is currently standardised or in the process
of being standardised by any independent standardisation body. BPEL4People and
correspondingly WS-HumanTask currently have the broadest industry support, while
BPEL-SPE is a joint white paper between IBM and SAP, BPELJ is a joint white pa-
per between BEA and IBM, and BPEL4Chor and BPELLight are currently academic
efforts.

5 Service Composition and Binding 79

Fig. 5.4. Integration of BPEL and WSDL

5.3 Assisted Composition

Given large service landscapes, creating compositions is a time-consuming and error-
prone task. As we have seen in the short methodology above, you have to find the
correct services, order them and their data flow correctly, and verify that the result-
ing composition does indeed achieve the intended goal. Assisted composition tries
to simplify these steps. Different degrees of assistance exist. Even the most simple
composition tool provides some assistance (e.g. searching for services). To classify
them, three distinct features, called mixed-initiative features can be identified [168,
169].

Finding correct services is a crucial yet complicated task in large service based
systems. First of all, such systems tend to be large incorporating hundreds or thou-
sands of services. Second, these service landscapes are at best described by accurate
service names and textual documentation. Finding a service is possible only through
free text search. If service names are inaccurate or incorrect and documentation non-
existent, this task becomes even more complicated. Issues also arise from different

80 M. Kowalkiewicz et al.

mindsets or terminologies between service users and service providers. E.g. search-
ing for a credit card charging service can be difficult if the service is described as a
payment service. The first mixed initiative feature is called filter inappropriate ser-
vices. It helps selecting the correct services by filtering all services, which are not
applicable in the current situation.

Automated planners [213, 154, 177, 23] plan according to an algorithmic plan-
ning strategy, such as for example forward- or backward chaining of services. Hu-
man planners, in contrast, will not always behave according to this schema when
modelling service composition. Users might have a clear idea about some specific
activities that they want to have in the process, without a global understanding how
the whole will fit together as a process. For example, they start modelling the ser-
vice composition by adding some operations and chaining them together, and then
continue with a not invocable operation that is intended to be in a later stage of the
composition. In such and similar cases, it is desirable for the user to let the editor
generate valid service chains that connect two unrelated activities. Accordingly, the
second mixed-initiative feature is suggest partial plan.

If human modellers have full control over the modelling, they are likely to make
mistakes. It is therefore necessary to check the correctness of the modelled process.
This includes syntactical and structural correctness criteria, like soundness [198].
But additional properties need to be checked. This includes for example whether
the process actually achieves the intended goal. If semantic service descriptions are
available, it is possible to check this, as well as additional properties. We subsume
them under the mixed initiative feature check validity. In the following, each feature
will be described in more detail.

5.3.1 Foundations

In this section, we provide the necessary formal foundations. We begin with introduc-
ing the notion of service operations. They are the basic building blocks from which
service compositions are built. Each service operation has a semantic specification
of its functionality.

Definition 1 (Service operation). A service operation is a tuple op = (I,O, pre, eff)
consisting of:

• I : List of input parameters consisting of variables.
• O: List of output parameters consisting of variables.
• pre: The precondition of the service is a logical expression and must be satisfied

in order to invoke the service.
• eff : The effect of the service is a logical expression. It describes the changes to

the current state resulting from the invocation of the service.

A service invocation i = (s, Z) is a pair consisting of a service operation
s = (I,O, pre, eff) and a variable assignment Z : V → Tground that assigns every
variable a ground term. Formally speaking, this is a Herbrand interpretation and
Tground is the Herbrand universe [109]. Variables v ∈ V are all the elements from I

5 Service Composition and Binding 81

and O plus the variables from pre and eff . preZ and eff Z are the precondition and
effect with all variables bound according to the variable assignment Z.

The syntactic interface consists of the input and output parameters. The semantic
interface specifies the precondition that must hold true in order to invoke the opera-
tion and the effect specifying the state changes resulting from invoking the operation.
Both precondition and effect are logical expressions. The logical expressions are sets
of literals defined over the relations, functions, constants, and variables. The input
and output parameters are typed variables used also in these logical expressions.
Formally, this is defined as:

Definition 2 (Logical expression). A logical expression e ∈ E defined over a al-
phabet (R, F,C, V) with the set of relations R, the set of functions F , the set of
constants C, and the set of variables V is:

• T is the set of terms. Tground is a subset of T containing only ground terms. A term
t ∈ T is a logical expression:
– A variable v ∈ V is an atom (v ∈ T , v /∈ Tground).
– A constant c ∈ C is an atom (c ∈ Tground ⊂ T).
– If f ∈ F is a function and t1, . . . , tn ∈ T then f (t1, . . . , tn) ∈ T . If

t1, . . . , tn ∈ Tground then f (t1, . . . , tn) ∈ Tground.
• If r ∈ R is a relation and t1, . . . , tn ∈ T are terms then r(t1, . . . , tn) ∈ E.
• If e is a logical expression, so is ¬e (e ∈ E ⇒ ¬e ∈ E).
• If e1 and e2 are logical expressions so is their disjunction e1 ∨e2 and conjunction

e1 ∧ e2 (e1, e2 ∈ E ⇒ e1 ∨ e2 ∈ E and e1 ∧ e2 ∈ E).

A logical expression is disjunction-free if it does not contain disjunctions. A dis-
junction-free logical expression a can be divided into the two logical expression a+
and a− where a+ contains all positive literals and a− contains all negated literals.
If a+ = a then a is negation-free.

A state is a disjunction-free and negation-free logical expression without vari-
ables. All states form the set Estate ⊂ E.

A logical expression a satisfies another logical expression a′ (written as: a |= a′)
if every positive literal of a′ is in a and no negative literal of a′ is in a.

With these basic definitions of what a service is, how service functionality can
be expressed, and how services can be composed, we can start describing the mixed
initiative features.

5.3.2 Filter Inappropriate Services

Filter inappropriate services filters those services that are not invocable in the cur-
rent state. For example, in the current state shown in Fig. 5.5 only few service are
actually invocable (e.g. perform payment and create account) and others are not (e.g.
create web space and create mail server). The invocable ones should be the only ones
available after all inappropriate services have been filtered. To realise this feature, we

82 M. Kowalkiewicz et al.

Fig. 5.5. One intermediate modelling step

need to know what service invocability means. A service is invocable if all its input
parameters are available and its precondition is satisfied. Formally, invocability is
defined as follows.

Definition 3 (Invocability). A service invocation i = (s, Z) with s = (I,O, p, e)

is invocable in state a if a |= p. Invoking service an invocable s with variable
assignment Z in state a leads to a state transition. This can be defined by the state
transition function γ (a, i) = a ∪ e+ \ {x|¬x ∈ e−}. γ is a partial function only
defined if a |= p.

As defined above, states contain only positive literals. This means that we only
add the positive literals from the effect to the state. The negated literals are then used
to remove all literals from this state for which a negated literal exists in the effect.
During our experiments, we learned that filtering all services which are not invocable
is too restrictive. For fully automated composition, such restrictive filtering is appro-
priate, because the algorithm should not create invalid service compositions. In the
mixed initiative environment we target at, it might be the case that human modellers
want to add services to the composition although they are currently not invocable.
Therefore, we introduce the notion of nearly invocable services. A service is nearly
invocable to the degree k if at most k input parameters are missing. Formally:

Definition 4 (Nearly invocable). Given a state S and a service operation op =
(I,O, Pre, Eff), op is nearly invocable to the degree k if (I = {i0, . . . , im, . . . , im+k,

. . . , in} with n = |I |):
• ∀ii ∈ I, i < m, ii ∈ facts(S),
• ∀ii ∈ I, i > k + m, ii ∈ facts(S),
• ∀l ∈ Pre+ with l = r(x0, . . . , xi), r ∈ R and ∀xi /∈ {im, . . . , im+k}: l ∈ S, and
• ∀¬l ∈ Pre− with l = r(x0, . . . , xi), r ∈ R and ∀xi /∈ {im, . . . , im+k}: l /∈ S.

If an operation is invocable to a degree k, then it is also invocable to all degrees j ,
with 1 ≤ j ≤ k.

The first two conditions specify exactly what was described above: it might be
the case that k inputs are not satisfied in order for the operation to be invocable.
The last two conditions are necessary to relax the satisfaction requirement for the

5 Service Composition and Binding 83

precondition. Only those literals in the precondition not containing one of the missing
inputs need to be satisfied in the state.

Using the notions of invocable and nearly invocable services, the modeller is
now able to retrieve more service suggestions through the filtering mechanism. E.g.
in Fig. 5.5 now the services to create web space and mail server are selectable.

5.3.3 Suggest Partial Plan

Suggesting a partial plan can be reduced to solving a planning problem:

Definition 5 (Planning problem). A planning problem P = (s0, sg, SD) is a triple
consisting of the initial state a0 inEstate, the goal g ∈ E and a service domain SD.
A service domain SD = (OP,O) consists of a set of service operations OP and
ontology describing the concepts used to specify services.

In order to suggest a partial plan, it is therefore necessary to determine the initial
state and the goal state for the planning problem. The initial state can be determined
by adding up all the effects of the services leading to the gap. The initial state then
contains all the available information. The goal state can be determined from the pre-
conditions of the services succeeding the gap. But of course, the information already
known in the initial state can be removed from the goal state. These are preconditions
already satisfied by preceding operations. Additionally, preconditions of services af-
ter the gap can be satisfied by other services also succeeding the gap but preceding
this service. These preconditions can also be removed from the goal state. Using the
generated planning problem an automated planner can be used to fill the gap.

5.3.4 Check Validity

Checking the validity of a modelled process actually consists of two distinct tasks:
checking whether the process itself is correct and checking whether it achieves the
intended goal. We call the first one semantic correctness and the second one semantic
conformance. We define semantic correctness as:

Definition 6 (Semantic correctness). A service composition is semantically correct
if

• it does not contain activities with unsatisfied inputs or preconditions,
• all activities in the composition are relevant, and
• it does not contain potentially redundant activities that have not been flagged as

explicitly not redundant.

Let us have a look at each criterion individually. Unsatisfied inputs and precondi-
tions of activities mean that the composition is incorrect. It cannot be invoked without
producing an error. Our first modelling example (Fig. 5.1 on page 75), would have
yielded several errors as the input and probably also the precondition of creating
web space and mail server were not satisfied. Formally, these two properties can be
defined by:

84 M. Kowalkiewicz et al.

Definition 7 (Unsatisfied Input). An input i ∈ I is unsatisfied for a service opera-
tion op = (I,O, Pre, Eff) in a state S if i /∈ facts(S).

Definition 8 (Unsatisfied Precondition). The precondition Pre of a service opera-
tion op = (I,O, Pre, Eff) is unsatisfied in a state S if

• ∃l ∈ Pre: l /∈ S or
• ∃¬ ∈ Pre: l ∈ S.

These definitions are inverse to the invocability definition from above. While a
service composition violating the first criterion will also be syntactically ill-formed,
a service composition violating the second criterion might very well be syntactically
correct. It only affects the composition on the semantic level. This means that it is
possible to technically invoke a service composition containing operations with un-
satisfied preconditions while this is not possible if operations have unsatisfied inputs.

The third criterion defines the relevance of a service operation inside a composi-
tion. This is necessary because it can be difficult for human modellers to determine
whether each service operation is required in a complex service composition. This
property can be used to assure us that the create account service is actually needed.
A service operation in a composition is relevant if one of its outputs is consumed by
a successor operation in the composition. If the operation does not have no successor
operation, we assume that it is relevant. Formally:

Definition 9 (Relevance). A service operation op′ = (I ′,O ′, Pre′, Eff ′) ∈ OP in a
service composition is relevant if

• ∃op′′ = (I ′′,O ′′, Pre′′, Eff ′′) and op′ e∗→ op′′ with ∃x, x ∈ O ′ ∧ x ∈ I ′′ or

• �op′′ = (I ′′,O ′′, Pre′′, Eff ′′) and op′ e∗→ op′′ (final activity).1

It might be the case that several operations in a service composition produce the
same output. Such activities are potentially redundant. Detecting redundancy in a
fully automated fashion is very complex: not only the outputs of the redundant oper-
ations, but also the effects must exactly match. This is rarely the case. Instead, oper-
ations without matching outputs and precondition are often redundant. We therefore
define potential redundancy as a week criterion: An operation is redundant if another
operation produces the same output. Formally:

Definition 10 (Potential redundancy). A service operation op′ with op′ = (I ′,O ′,
Pre′, Eff ′) ∈ OP is potentially redundant if another operation op′′ = (I ′′,O ′′,
Pre′′, Eff ′′) exists with o′ ∈ O ′, o′′ ∈ O ′′, type(o′) = type(o′′).

This potential redundancy needs to be addressed by the human modellers. They
can either resolve the potential redundancy or flag it as not redundant. This mecha-
nism leads to many potential redundancies. A potential extension could include the
ranking of possible redundancies based on the overlapping of operation outputs and
to only alarm the user if the match is higher than a predefined threshold.

1 op′ e∗→ op′′ denotes that that there is a path in the composition connecting op′ and op′′.

5 Service Composition and Binding 85

With the second property, semantic conformance, the process is checked against
a specification. It can be used to check whether a process achieves the intended func-
tionality. This can be defined as:

Definition 11 (Semantic Conformance). A process n is semantically conform to a
process specification R = (I,O, pre, eff) if:

1. preR |= pren with pren the precondition of the process,
2. eff n |= eff R with eff n the effect of the process, and
3. (preR ∪ s) |= prei for all activity instances i and for all states s of the process

in which i can be invoked.

This means that a process is conform to the specification, if every possible pre-
condition of the modelled process is valid according to the precondition of the spec-
ification, if it always reaches the goal (effect) of the specification, and if every con-
tained activity instance is invocable whenever it can be invoked. To test these proper-
ties we need to be able to calculate three things: pren, the precondition of the process,
eff n, the effect of the process, and all states s in which an activity instance can pos-
sibly be invoked. In [128] we showed how they can be calculated using a Petri net
based model of the process.

Using the approach for calculating semantic conformance will actually enable
us to detect more semantic correctness violations. For example we could use it to
test whether parallel activities are in conflict or not. It also will make checking for
unsatisfied preconditions easier. But these extensions of semantic correctness are still
in research.

5.3.5 Case Study

Together with SAP Labs in Palo Alto we realised the three above-mentioned mixed-
initiative features as an extension of the SAP Netweaver Visual Composer. How
the architecture looks like is shown in Fig. 5.6. Crucial components of the back
end were actually the reasoner and the composer from the Adaptive Services Grid
project that were used to implement the mixed-initiative features. The composer will
be presented in the next section on run-time composition.

Fig. 5.6. Assisted composition with SAP Netweaver Visual Composer

86 M. Kowalkiewicz et al.

Fig. 5.7. Leave request scenario

As a show case a small process from Duet,2 a recent software product by SAP
and Microsoft. Duet extends the reach of SAP’s business processes to a large num-
ber of users by embedding them into Microsoft’s Office environment. We extracted
the process flow among the ERP Web services Duet is built upon. The leave re-
quest scenario consists of two parts. First, an employee files a leave request. Second,
his manager approves or denies this request. Therefore, the two roles employee and
manager participate in the leave request process. Due to length constraints, we limit
ourselves to the part of the process in the role of the employee. The scenario is de-
picted in Fig. 5.7 using the BPMN [159]. The activities in the diagram correspond
to Web service operations. To describe the semantics of the operations, we extended
the BPMN syntax so that we can depict Web Services Modeling Ontology (WSMO)
service capabilities: The inputs that a service consumes and the conditions over these
inputs make up the precondition. The outputs of a service and the relation between
input and output make up the postcondition.

Before the employee files a leave request, he will typically try to get an overview
of his time balance and suitable dates for the leave. Duet will collect this information
when the leave request application pane is opened. Therefore, Duet will call the
following four Web service operations.

• Read Employee Time Account This operation returns the time balance of an em-
ployee consisting of paid vacation, overtime, and sick leaves. The operation takes
an employee object uniquely representing the employee and a key date, for which
the balances are returned, as input.

• Read Leave Request Configuration by Employee This operation outputs the leave
configuration (allowed leaves such as half or full day) for a specific employee as
stored in the ERP system. The operation takes an employee object and a key date
as input.

• Find Leave Request By Employee It might be the case that an employee has re-
cently filed other leave requests which are not yet processed. This operation re-

2 http://www.duet.com.

5 Service Composition and Binding 87

turns an employee’s pending leave requests, so that he or she can consider them
together with the time balance. The operation takes an employee object as input.

• Find Leave Request Allowed Approver by Employee A leave request is approved
by the line manager of the employee filing it. In some cases, a different approver
or no approval at all is necessary. This operation returns the employee object
corresponding to the allowed approver for the leave request. It takes an employee
object as input.

The information retrieved by the four service operation described above is visu-
alised in Duet and the employee can decide on a day or a period browsing his Outlook
calendar. This yields the sequential invocation of the two following operations:

• Check Create Leave Request Before a leave request is created in the ERP sys-
tem, it must be checked for plausibility. This operation takes the same inputs as
the operation that creates the leave request, which are an employee object, the
leave period and the leave type. If the check is successful, the operation returns
a positive result.

• Create Leave Request After the plausibility check has been successful, this op-
eration finally creates the leave request in the ERP system. As a result, a leave
request is created.

Now let us have a look at how the three mixed initiative features can support
modelling this process.

Filter Inappropriate Services

When the leave request is to be created from scratch, the tool will first retrieve all
available Web services. The modeller starts out with adding the role employee to the
composition by selecting this role from a list of all available roles (e.g., supplier,
customer, manager). Our tool then assumes the implicit availability of a variable of
the complex type employee, representing the person who takes part in the business
process in this role. The tool is now able to filter the list of available service oper-
ations to those that require an employee object as an input. Our experiments have
shown that filtering all service operations that are not be invocable in the current
step of the composition is too strict. The tool therefore also presents service oper-
ations that are nearly invocable in the sense that only one input is missing. Using
this technique, we are able to retrieve very reasonable suggestions from the service
repository. The operations in this repository are grouped around so-called enterprise
services. In our example, the modeller would therefore now expand the Time and
Leave Management enterprise service and select the first four operations depicted in
Fig. 5.7. As there are no dependencies between the activities, the user connects the
operations using a parallel control flow. This is shown in Fig. 5.8.

At this point, the modeller is able to retrieve more service suggestions through
the filtering mechanism by clicking on the merge node of the parallel split. Our tool
will then present a list of service operations that are invocable or nearly invocable
based on the union all postconditions of the services which are in the composition so

88 M. Kowalkiewicz et al.

Fig. 5.8. Screenshot of the modelling tool

far. The postconditions (i.e., the output data types) of the operations are also depicted
in Fig. 5.7. Amongst others, our tool will suggest the operation Check Create Leave
Request as a nearly invocable service. The modeller adds it to the composition and
creates a link between the merge node and the operation.

Suggest Partial Plan

In the last step, the modeller resolved a problem with the Check Create Leave Re-
quest operation. If the user clicks on the operation to refresh the filtered list of avail-
able services, the tool will suggest the Create Leave Request operation. From the
perspective of the user, this is the final operation. However, the modeller might not
be familiar with the fact that a specific check operation needs to be invoked in order
to create a leave request in the system. He then directly selected the Create Leave Re-
quest operation after the merge node depicted in Fig. 5.8. The modeller also creates
the human activity producing the TimePointPeriod and links it to the Create Leave
Request operation. Now, the modeller tries to create a link between the merge node of
the parallel flow and Create Leave Request. The tool will detect that the set of post-
conditions up to the merge node does not satisfy the preconditions of Create Leave
Request (the type CheckCreateLeaveRequestResult is missing). The tool instantly
queries the semi-automated composition engine which detects that the insertion of
the Check Create Leave Request operation would satisfy this open information re-
quirement. The user is prompted whether or not the Check Create Leave Request
should be inserted. The modeller approves this suggestion and the composition is
complete.

5 Service Composition and Binding 89

Fig. 5.9. Agenda summarising the problems with the composition

Check Validity

As the last step, the modeller added the nearly invocable operation Check Create
Leave Request. The tool highlights operations for which problems are tracked. As the
added operation is not invocable, but nearly invocable, one input type is missing. The
tool therefore marks the operation with a red border. This can also be seen in Fig. 5.8,
where two out of four activities are highlighted. By clicking on the Check Create
Leave Request operation, the user can open a panel showing its input and output
types as inferred from the pre- and postconditions. The user sees that all input types
of the operation are currently available in the composition, except TimePointPeriod,
which is also highlighted using red colour in this drill-down view. The user can
also get an overview of all current problems with the composition by looking at the
agenda, depicted in Fig. 5.9.

The missing parameter TimePointPeriod represents the date or period for which
the employee intends to request a leave. As our scenario has been taken from Duet,
this data is provided by Microsoft Outlook after a the user selects a date from the
calendar. In our example, the modeller therefore creates a human activity (modelling
a task such as marking a period in the calendar) that produces a TimePointPeriod out-
put. The modeller connects the human activity with the Check Create Leave Request
operation. The colouring of the operation and the TimePointPeriod input type in the
parameter view disappear and the issue is removed from the agenda.

5.3.6 Other Assisted Composition Approaches

Web Service Composer

Sirin, Parsia and Hendler [176] present a prototypical implementation of a composer
for Web services. Their tool allows creating compositions of Web services that are
semantically specified with OWL-S [125] and their execution. The created service
compositions can in turn be stored as OWL-S process models. Process models are
a part of OWL-S ontologies which is normally used to encode the choreography
for a described service. Well-known control constructs from the area of Workflow
Management can be used within OWL-S process models. It is therefore a suitable
format for representing service compositions. The focus of their work is on filtering
the list of available services at each composition step and thus helping the user to

90 M. Kowalkiewicz et al.

select the appropriate services. In order to create a service composition, the user
follows a backward chaining approach. The user begins with selecting a Web service
that has an output producing the desired end result of the composition from a list of
all available services. Next, the user interface presents additional lists connected to
each OWL input type of the service producing the end result.

In contrast to the first composition step, these lists do not contain all available
services: They contain only those services that generate an output compliant to the
particular input type they are connected to. An output of a service A is compliant to
an input of a service B, if their types are exactly the same or if the output of A sub-
sumes the input of B (i.e., the input of B is a specialisation of the output of A). If a
service is selected from the list of compliant services, this service’s inputs must again
be produced by selecting services producing compliant outputs. This is repeated un-
til the user decides at one point to provide the inputs that are not connected to a
compliant service by entering them as input values (or connecting them to compliant
services that have no input parameters).

Creating the service composition by forward chaining (i.e., starting with the first
activity in the process instead of the last one) is planned but not implemented in
their prototype. In addition to filtering on the compliance of the services in terms
of their inputs and outputs, the user can apply further filtering based on the non-
functional properties of the services. This only works for services that adhere to a
specific OWL-S service profile (i.e., they implement the service profile). Once the
user has selected a service profile, the system renders an UI element which allows
him or her to provide values for the non-functional properties that are specified for
the selected service profile. The user can then apply the filter, thereby further restrict-
ing the set of services that are presented for the current composition step.

The Web Service Composer filters the list of services that can be included in the
composition at each composition step. This realises the filter inappropriate services
feature. However, the realisation of this use case in Web Service Composer is re-
stricted in two ways: First, the tool only considers inputs and outputs, i.e., the mere
data transformation that services realise. The preconditions that must be satisfied be-
fore the execution of the services and the effects that the executions of the services
have on the state of the world are not taken into account. Second, the selection of
appropriate services is done per input of a downstream service that must be satis-
fied, which is due to the strict backward chaining approach imposed by the tool. This
means in consequence that the plans constructed with the tool are not always opti-
mal. For example, when one service operation delivers two outputs each of which
satisfies a different input of a downstream service, this services operation has to oc-
cur twice in the composed service. Web Service Composer supports two extensions
of the filter inappropriate services feature: First, the tool can further restrict the set of
filtered services according to user-specified values of non-functional properties that
are common to that set. Second, the list of filtered services which is presented to the
user is ordered according to the goodness of match: Services that exactly produce a
necessary input for a downstream service (such as an exact match) are ranked higher
than services that produce outputs that subsume the necessary inputs.

5 Service Composition and Binding 91

PASSAT

Myers et al. present PASSAT (Plan-Authoring System based on Sketches, Advice,
and Templates) [137], an interactive tool for constructing plans. PASSAT is not di-
rectly concerned with the creation of service compositions, but its concepts can be
mapped into the context of service composition.

PASSAT is based on hierarchical task networks (HTN) [187], while the model
has been extended to realise some concepts that are outlined below. In HTN plan-
ning, a task network is a set of tasks (or service calls) that have to be carried out
as well as constraints on the ordering of these tasks. Moreover, it consists of a set of
constraints that must be valid before the execution of the tasks and information about
how the tasks instantiate variables. Because the variables (partly) describe the state
of the world before and after the execution of a specific task, the constraints on these
variables can be used to express preconditions and effects.

The HTN based approach naturally imposes top-down plan refinement as the
planning strategy the user must adhere to: The user can start by adding tasks to a plan
and refine them by applying matching HTN templates. A template consists of a set of
sub tasks that replace the task being refined, as well as the preconditions and effects
of applying individual tasks and the entire template. It is noteworthy that the user
has the possibility to override unmatched constraints when applying a template. This
is especially desirable when comprehensive domain knowledge (i.e., a collection of
templates) cannot be provided. Task refinement is repeated until the plan contains no
activities that can be further expanded. A core feature of PASSAT is its automated
planning mode, which allows the user to have the system expand all remaining tasks,
applying the templates that are currently available to the system. PASSAT also fea-
tures an advice mechanism that allows the user to specify high-level policies for the
overall plan being created. These policies are global constraints that restrict the set
of actions that the user can undertake when developing a plan. However, they can be
relaxed and overridden and need not to be necessarily satisfied to reach the overall
goal. The automated planning mode also takes these policies into account when it
selects the templates for refining the open tasks. Opposing the strict top-down re-
finement approach implied by the use of HTN networks, PASSAT provides a plan
sketch facility: This allows the user to freely arrange tasks that need not to be neces-
sarily fully specified and that can reside on different layers of abstraction (regarding
the template hierarchy). After the user has outlined a plan sketch, the system tries to
find possible expansions by applying matching templates. The user can then choose
one of these expansions to be included in the plan and return to the normal planning
mode. PASSAT also informs the user about open tasks and outstanding information
requirements in order for the plan to be completed. Therefore, it presents the user
with an agenda of actions such as expand task, instantiate variable and resolve con-
straint. The system helps the user to choose from the applicable templates at a given
composition step by keeping track of past user experience: A statistic about how
often a template has been applied in plan refinement is encoded in the templates.

PASSAT is the only tool of those included in this survey that partially supports
the suggest partial plan feature. PASSAT is a tool for interactive plan authoring based

92 M. Kowalkiewicz et al.

on HTN networks. The user can invoke an automated planning mode to expand open
tasks in the plan. This can be seen as a specialisation of the suggest partial plan fea-
ture in the sense that partial plans can only be generated from the current state to a
state in which the composition is finished, i.e. all tasks can be executed. However,
this realisation of the feature is restricted in the way that the user must have com-
pleted the plan on a high level of modelling—otherwise the task network cannot be
expanded. PASSAT also supports the check validity feature, as it interleaves a check-
ing mechanism with the actual planning process: After each user action the system
updates an agenda showing open information requirements that must be satisfied in
order to have an executable plan. As an extension to this mechanism, PASSAT orders
the agenda according to user-specified criteria.

CAT

Kim, Spraragen and Gil introduce CAT (Composition Analysis Tool) [107], a tool
which illustrates their approach to interactive workflow composition. The focus of
their work is to assist the user in the creation of computational work flows. The au-
thors’ work is not directly related to service composition. However, we can conceive
a computational workflow as a service composition. The activities of the workflow
are represented by services that realise data transformations.

The authors have developed their own knowledge base format, which they use to
semantically describe the components that can be used in a workflow and their input
and output parameters: Component ontologies describe hierarchies of components,
from abstract-level components to executable components. An abstract component
represents a common set of features that applies to all components of that type. Do-
main ontologies semantically specify the data types which can serve as inputs and
outputs of the components described in the component ontologies. In CAT, the user
can add components to the composition at any time. There is no need for the user
to follow a strict backward or forward chaining composition. The end result of the
composition can be specified by declaring outputs produced by components as the
end result (or as a part of it). Control flow in CAT is described by explicitly linking
inputs and outputs of different services together. Values of input parameters can also
be default values from the respective ontologies or values entered by the user. Instead
of filtering the set of services that can be included in a composition, CAT provides a
list of suggestions about what to do next. These suggestions resolve errors and warn-
ings, which are also displayed. The idea is that consequently applying suggestions
will produce a well-formed workflow as a result. The authors therefore introduce a
set of properties that must be satisfied by the composition in order to be well-formed.
These properties ensure that

• the composition has an end result,
• all components’ inputs are satisfied,
• all components have been specialised to executable components,
• all components produce outputs relevant for producing the end result,

5 Service Composition and Binding 93

• for all links between components there is a subsumes-relation between the output
of one component and the input of the other component,

• the composition does not contain redundant links or components.

Depending on whether these properties are satisfied or not, the ErrorScan algo-
rithm (which is also provided in [107]) determines which suggestions are presented
to the user. CAT uses heuristics to determine the ordering of the suggestions, so that
more recent and more severe errors are displayed before warnings that do not neces-
sarily have to be resolved in order that the workflow is well-formed. It is noteworthy
that the suggestions in CAT have the property of being corrective or additive: Apply-
ing a suggestion never causes more errors than it resolves.

CAT checks at each composition step if the composition complies with a set of
properties that describe the well-formedness of the composition. In case these prop-
erties are violated, the system consequently presents a list of warnings and errors.
As an extension of this use case, the authors present an algorithm that presents the
user with suitable suggestions for next steps based on the evaluation of the well-
formedness criteria. The applicability of CAT has been shown in the domain of seis-
mic hazard analysis; however, it remains unclear why the authors opted for devel-
oping their own correctness criteria for computational work flows rather than build-
ing upon more established approaches to verify workflow correctness, such as the
soundness criteria introduced by van der Aalst [198]. Also, the authors do not de-
scribe how their notion of well-formedness relates to the soundness criteria for work
flows.

5.4 Run-time Composition

In the previous section we presented approaches for the creation of service compo-
sition, where the focus was on manual modelling of the composition during design-
time. Often these are viable approaches. However in dynamic domains with large
service landscapes, this leads to a lot of work because changes in the landscape have
to be manually and regularly transcribed into the composition models. In this sec-
tion, we will first elaborate the problems of design-time composition and motivate
run-time composition (5.4.1). Then we will present the requirements for doing auto-
mated service composition (5.4.2). In Sect. 5.4.3 an approach for run-time composi-
tion is given that uses heuristic search.

5.4.1 Motivation

Dynamic domains are characterised by two possible types of dynamics:

• service landscape changes: constantly new services are published, old ones
change or are removed,

• business requirement changes: new, changing, or obsolete business requirements.

94 M. Kowalkiewicz et al.

As already discussed in Sect. 2.3 traditional approaches for service oriented archi-
tecture (SOA) suffer from drawbacks when applied to dynamic service landscapes.
If a service landscape changes, existing service compositions might become inad-
equate or even incorrect. A newly published service might be more suitable then
previously used services because it is cheaper, faster, or aggregates the work of sev-
eral existing services. If a service changes it might no longer be suitable for the
compositions in which it was used previously. Of course, if a service is removed
all service compositions using this service will fail. If service types exist and some
form of dynamic binding (without semantics) is in place some of these problems can
be solved. However this rarely works with existing Web services based on simple
WSDL descriptions because the probability for a full overlapping of functionality
and data structures is rather low.

Business requirement changes can have a variety of reasons. If the business ex-
pands into new markets (e.g. selling in new countries), new services are required.
Business requirement changes can also be yielded by changing corporate policies or
legal requirements. In both cases, if the service landscape or business requirements
change, manual adjustments or the creation of new compositions is required.

Another problem with the manual composition of service compositions, is that it
is an error-prone, complex tasks. Highly qualified specialists are required, who not
only can model service compositions but also understand the business requirements
and know what the services do. These specialists are likely to create incorrect com-
positions that do not work for some special case or in-optimal compositions because
of the usage of in-optimal services or their incorrect chaining (e.g. sequence although
parallel invocation is possible).

In-optimality can also yield from other problems. Compositions are not tailored
to the individual service request. Instead they need to work for all requests including
also very rare requests. This leads to more complex service compositions including
decisions (xor-splits) for handling different requests. Such compositions are harder
to understand and maintain by humans. Sometimes it can also be the case that a
for some requests a specific service can be used but all the other requests require
the more generic, probably more expensive or slower service. This service will then
be used for all requests, leading to in-optimality for some requests. Changes to the
service landscape can render existing service compositions in-optimal.

Shifting the service composition creation from design-time to run-time promises
to solve these problems. In this case, no human modeller is involved in creating
the compositions. Instead, the compositions are created automatically, on-demand
based on a semantic request specification and semantic service specifications for the
services in the service landscape. As compositions are not modelled up-front but
created on-demand, they reflect the current status of the service landscape. Changes
to the service landscape are therefore unproblematic. As there is still a time inter-
val between creation of the composition and its actual enactment, service landscape
changes happening between creation and enactment still affect the composition. But
as this time interval is reduced, such problems are unlikely. Business requirements
are specified in form of semantic request specifications. If they change only these
specifications need to be adjusted. The resulting compositions change automatically.

5 Service Composition and Binding 95

As no human modeller is involved, errors and in-optimality yielding from manual
modelling can only happen if semantic service specifications are incorrect. Finally,
the specific tailoring to the request and the current service landscape prevent further
in-optimality.

5.4.2 Requirements

Requirements analysis incorporates the collection and categorisation of requirements.
The categorisation includes three main categories: general, functional and non-func-
tional. While the general requirements can (and will) also be justified through the
usage scenarios they precess the other requirements temporarily and logically. The
requirements are ordered according to the following categorisation:

• elements of composition defines the building blocks of composition.
• control flow defines the order of the elements of composition inside a composi-

tion.
• data flow defines how data is exchanged between the elements of composition.
• data model defines how data elements are described.
• Quality of Service (QoS) defines how optimisations for compositions are de-

scribed.

Following this model the requirements are described in the following.

General Composition Requirements

Service Composition Is Automated

Service composition can be performed manually, assisted, or automatically. Systems
following the paradigm of service orientation, are open: Service requesters appear
and disappear, and service providers register new services, change or delete exist-
ing services. Handling these demands with manually modelled compositions can be
inadequate or impossible. On top of that, a company might provide a lot of very sim-
ilar products. Our use case scenario might be very complicated in the real world.
The company can offer just domain registration, domain registration plus e-mail
addresses, or full-fledged packages. Manually modelled service compositions that
handle all this different cases are complex. Complexity increases, if dependencies
between services exist (e.g.: domain registration is only possible if web space is or-
dered, too) or if providers register or remove services.

Service providers register their services (e.g. domain registration) and offer them
to customers. This can also include new types of services. A provider of e-mail ac-
counts may want to offer its services in the Dynamic Supply Chain Management.
With manual or assisted service composition the service provider asks the end ser-
vice provider to adjust its service composition in order to allow customers to include
an e-mail account in their package. If the end service provider uses automated service
composition, new services will be used automatically. A service provider may also

96 M. Kowalkiewicz et al.

change or de-register its services. Again this will result in manual modelling if no
automated service composition is used. Finally, the end service provider can change
its application. Using automated service composition, the end service provider only
needs to change the service requests. The service composition component automati-
cally adjusts the service compositions.

Each situation presented above involves some change in the service composi-
tions. For manual or assisted service composition this means that a person has to
change the compositions manually. This is time-consuming and costly. With auto-
mated service composition no service compositions to change exist. Adaptation to
changes resulting from the above mentioned openness of service oriented architec-
tures is therefore easier.

Service Request Describes the Goal of Composition

A semantic service request is the input for automated service composition. If service
enactment executes the resulting service composition, its effect should be in line with
the service request.

To allow automated service composition a service request includes initial state,
goal state and request data. The initial state describes the current situation before
enacting the service composition. The goal state describes the state of the world that
should be reached. Request data includes concrete data elements that are available in
the initial state.

Service Composition According to Service Request

A service composition component creates compositions, that accord the service re-
quest: The service composition is enactable in the initial state with the given request
data and enacting the service composition leads to a state that fulfils the criteria de-
fined for the goal state.

Requirements on the Elements of Composition

The elements of composition are the building blocks from which service composi-
tions are composed. The service specification language defines their concrete format.

Elements of Composition Are Service Interactions

The elements of a composition are activities that perform a task. The only activi-
ties are service interactions. Besides invoking services, a composition can itself be
invoked as a service. The resulting composition includes service interactions only
on the specification level without a binding to a concrete implementation. During
the binding sub-cycle the specification is later bound to a concrete implementation.
For the scenarios this means that every activity must be invocable as a service. This
restriction includes all internal activities. For example, the activities to create an ac-
count and to reserve disk space on a web server are services, too.

5 Service Composition and Binding 97

Services Have Input and Output Parameters

Services perform a specified functionality. Often this functionality is parameterised
with data provided in the service request. The registration of the domain name re-
quires at least the domain name to register as an input parameter. Services also return
a result. To allow the input and output of data, parameters are needed. A service has
zero or more input and output parameters.

Service Functionality Is Described Semantically

Service functionality is described semantically to allow automated service compo-
sition. Besides input and output parameters, specifications of services include pre-
conditions and effects. Preconditions and effects describe the state of the world and
the state of available information. To do so, it is possible to define logical relations
between input parameters, between output parameters and between input and output
parameters. To describe functionality often additional variables that are not parame-
ters are necessary.

Services Can Have More than One Precondition or Effect

It is common that a service has more than one precondition or effect. For example,
the service to provide web space has the preconditions that enough disk space is
available and that the load on the machine is acceptable. It has the effects, that web
space is reserved and that an account for the user is created. All of the preconditions
must hold in order to execute the service and all effects of the service happen if the
service is executed.

Expressions are defined in first-order logic. Therefore expressions can be con-
junctions or disjunctions of other expressions (Fig. 5.10). Conceptually services have
only one precondition and one effect. If more than one precondition or effect is
needed, both can be conjunctions of other expressions.

Services Can Have Disjunctive Preconditions

Besides having multiple preconditions that all must be true in order to invoke the
service, a service can have disjunctive preconditions. The service is invocable, if just
one of the preconditions is true. Again, we can use just one expression from first-
order logic to express disjunction. It is therefore sufficient that we still limit services
to just one precondition. If disjunctive preconditions are not available, they can be
simulated using several distinct services.

Fig. 5.10. Composition of logical expressions

98 M. Kowalkiewicz et al.

Services Can Have Disjunctive Effects

Disjunctive effects are necessary to express services that can have several differ-
ent effects. The web space provisioning service that is responsible for multiple web
servers is an example for such a service. Depending on the selected web server, the
web space will be provided on just one of the managed web servers. Implementation-
wise disjunctive effects are more complicated. While missing disjunctive precondi-
tions can be simulated, this is not possible for disjunctive effects. Disjunctive effects
also increase the complexity of automated service composition [61, 73].

Control Flow Requirements

The control flow of a process or service compositions defines the order in which the
elements of composition are enacted. This includes simple sequential ordering but
also complex parallel or alternative control flows. Figure 5.2 on page 76 included
sequential, parallel, and alternative control flows.

Requirements regarding control flow can be separated into two types of require-
ments: Requirements regarding the composition functionality and requirements re-
garding features of the composition language. With workflow patterns [197] a cate-
gorisation for different control flow constructs exists in workflow management. Re-
quirements analysis regarding control flow will be performed according to these pat-
terns.

Composition of Sequential Control Flow

In a sequence of activities the activities are enacted one after another in a well-defined
order.

Composition of Parallel Control Flow

Parallel control flow allows the parallel invocation of activities. Parallel control flow
is realised by two different patterns: parallel split and synchronization. A Parallel
Split splits a single thread of control into multiple threads. A Synchronization merges
them later.

Composition of Alternative Control Flow

Alternative control flows are parts in a process where—depending on some condition
—one out of many possible control flows is selected. The patterns exclusive choice
and simple merge constitute the simplest form of alternative control flow: Exactly
one of the alternative control flows is selected. If a multiple choice is used instead,
multiple alternative flows can be taken. To merge them three different patterns syn-
chronizing merge, discriminator and multiple merge can be used. Only synchronizing
merge performs synchronisation of control flows. In contrast to multiple merge, the
discriminator pattern executes subsequent activities only once.

5 Service Composition and Binding 99

In general, a service composition component should support at least multiple
choice as a splitting pattern. It can simulate parallel split and exclusive choice as
special cases. Merging patterns are more complex. Of the synchronising pattern—
Synchronization, simple merge and synchronizing merge—only the last one is nec-
essary. Non-synchronising patterns are currently not possible with automated service
composition algorithms.

Composition Language Supports Workflow Patterns

So far all control flow requirements were requirements regarding the functionality
of the composition component. The actual output as an instance of the composition
language is important as well.

The basic requirement on the composition language regarding control flow is
the support of the above-mentioned required workflow pattern. This can be achieved
through a graph-structured or a block-structured approach. In a graph-structured ap-
proach activities are vertices that are connected through edges that symbolise order-
ing constraints. In a block-structured approach structured activities exist that contain
other activities and determine their enactment order. While a graph-structured ap-
proach is more generic, is a block-structured approach easier to visualise and reason
about. Reasoning on process structures is for example necessary during negotiation
to adhere to quality of service properties. In general it is best to support both ap-
proaches like WS-BPEL [149] does. The composition language should also support
the patterns that cannot be composed automatically. This makes sense as automated
composition can reuse manually modelled process fragments.

Data Flow Requirements

The data flow of composition defines how data is exchanged between the service.
Services have input and output parameters. Output parameters of one service can be
the input for other services. Data flow requirements include for example the ability to
exchange data and the usage of process input data. The following four requirements
regarding data flow are all defined over activities instead of services. This is valid as
the activities represent invocations of services and the actual data exchange is done
between the activities.

Activities Exchange Data

The fundamental data flow requirement is the ability to exchange data. Exchanging
data between activities and therefore data flow is supported in nearly all process
meta models [51, 119]. Activities have formal parameters that are replaced by actual
data when invoked. This data can either be process input data or output from other
activities.

Figure 5.11 illustrates data flow for our example. The notes are the data elements
that are exchanged between the activities. An arrow leading to a data element means
that it is created or modified by the originating activity. The account (ACC) is for
example created by the create account activity. An arrow leading from a data element

100 M. Kowalkiewicz et al.

Fig. 5.11. A data flow example

to an activity symbolises that this data element is an input parameter for the activity.
For example, the account is input to the create web space and create mail server
activities.

In workflow management, two different approaches to model data flow are in
use. With the first approach all data is stored on the process level. Input parameters
of activities are read from this central storage. Output parameters are stored in this
central storage or—as it is called—blackboard. With the second approach, data ac-
tually flows between activities. Explicit data flow connectors connect the outputs of
one activity with the input of another one. So the main difference is that in the first
approach all data exchange must be done through the central storage. If the output
of one activity is used by two other activities, it is still written only once to the stor-
age and read twice. In the second approach two distinct data connectors exist. WS-
BPEL uses the blackboard approach through process variables [149]. In contrast,
Leymann and Roller [119] propose a meta model, used in IBM MQSeries Work-
flow, that facilitates explicit data connectors. The flexibility gained by the black-
board approach, stands in contrast to its harder to follow—implicit—data flow. This
requirement and service composition in general are agnostic to the actual approach
selected.

Activities Use Process Input Data

Figure 5.11 shows the data flow for an example composition. Certain data elements,
like DN (the domain name) and P (the personal details), are not produced by any ac-
tivity. These data elements are part of the process data and are inputs for the process.
Processes must have such data, and activities must be able to use them.

5 Service Composition and Binding 101

Data Exchange Implies Control Flow

Control flow embeds an ordering constraint between two activities if one activity
depends on another one. Dependencies are for example causal links (e.g.: an activi-
ties creates the precondition of another one) or the protection of causal links. Causal
links do not only exist on the level of semantic service descriptions, but also for in-
put and output parameters. If one activity uses the output of another activity as an
input a causal link between the two activities exist. Therefore an ordering constraint
between the two activities must be included.

Activities Create New Variables

While this requirement sounds trivial and self-evident, it actually is not for automated
planning. Activities create new variables, means that activities do not just write data
into already defined variables, but they create variables on the fly. With automated
planning this is usually not possible. All the variables that are used during compo-
sition must be defined in advance. This includes also intermediate variables that are
neither used in the input nor in the output. When creating the web space, an account
variable must be available. This variable is never used in the input or the output. It
is also not obvious why such a variable could be necessary. Hence, by adding this
variable we are encoding assumptions about automatically created service compo-
sition into the service request. This is bad as it hampers flexibility. Other service
compositions are possible that do not need this variable.

Defining all necessary variables requires a lot of information about the available
services and at least a rough idea on how the composition could look like. There-
fore it is required here that activities can create new variables and that the service
composer takes these into account.

Data Model Requirements

The data model defines how data elements are described. The data model is of im-
portance for the service composition component, as it has to use data elements to
replace the formal parameters with actual parameters.

Data Elements Are Typed

Data elements are exchanged between services as parameters. To ensure that only
valid data elements are passed as parameters it makes sense to type them. Besides
predefined types, user-defined types are necessary as well. By typing parameters we
know for example what the payment service requires as an input: Neither a string
nor a number, but a credit card number. But type-safety not only prevents service
enactment from invoking services with wrong parameters, it also eases planning.
With typed data elements and parameters the service composer knows that it can
only use the services for which all necessary inputs are available.

102 M. Kowalkiewicz et al.

Data Element Types Are Defined in an Ontology

Service specifications are annotated semantically to allow automated service com-
position. Service specifications therefore include preconditions and effects. Both are
modelled as logical expressions. To use input parameters, output parameters and
variables in these logical expressions, the types of data elements are described in an
ontology.

An ontology defines concepts and their relations. A concept can be a sub-concept
of another concept (inheritance). Aggregation and composition relations can also
exist between concepts. As the example shows all these different relations are nec-
essary. As no mediation is supported, all concepts used in one scenario have to be
defined in one ontology. A service provide is therefore required to use only these
concepts to describe his services.

Composer Is Aware of Data Element Structure

Besides having data elements with ontology based types it is also necessary that
the composer is aware of the internal structure of data elements described using
an ontology. To do so the composer has to not only understand function-free first-
order logic but also Frame Logic [105]. Frame logic is an enhancement of first-order
logic as it adds object oriented concepts like object identity, inheritance and complex
objects.

Data Elements Can Be Used to Evaluate Control Flow Conditions

Above, we stated the requirement to compose alternative control flow. An alternative
control flow can be the result of an exclusive choice or a multiple choice. Both have
one incoming and multiple outgoing control threads. To decide which control threads
are actually executed, conditions are assigned to the individual threads. Based on
the result of the check domain activity, the process is either continued to register the
domain or finished with an error message. Conditions are necessary to express which
path in the process should be taken.

5.4.3 Heuristic Search as a Composition Algorithm

Heuristic search algorithms are currently not used for automated service composi-
tion. Our work is based upon previous research by Hoffmann and Nebel who de-
veloped the planners FF [89] and Metric-FF [87]. They introduced enforced hill-
climbing and relaxed graphplan as a heuristic. Metric-FF also supports numerical
properties and the optimisation for them. This functionality can be used to optimise
for QoS properties. As demonstrated earlier their algorithm does not support un-
certainty about the initial state or service invocation effects, is not able to compose
parallel or alternative control flows, and does not create intermediate variables.

Above we presented an elaborated requirements analysis for automated service
composition algorithms. Most of these requirements are fulfilled by existing heuristic
search algorithms. The following ones are not supported:

5 Service Composition and Binding 103

1. Parallel control flow
2. Uncertainty in initial state and service effects
3. Alternative control flow
4. Creation of new variables

The first requirement is parallel control flow. Compositions consist of service in-
vocations and their ordering. This ordering is the control flow. The straight forward
approach is to assume a total ordering between service invocations and perform them
sequentially. But in reality service invocations are often only partially ordered. If ser-
vices do not depend on each other’s results and do not conflict with each other, they
can be invoked non-sequentially or in parallel. This saves execution time. Therefore
a composition algorithm must be able to create compositions with control flows that
only contain the necessary orderings.

The second requirement is to support uncertainty in the initial state and service
effects. Executing a service with uncertain effects leads to several new states. This
is necessary to represent a service that determines the issuing credit card company
based on a credit card number. The exact outcome can only be determined after
actually invoking the service for a given credit card number. After invoking a service
with uncertain effects we are in more than one possible state. Hence, we might as
well start with multiple possible states. Uncertainty in the initial state is necessary
to express that for a certain fact only the possible values but not the exact value
are known. For compositions containing service invocations with uncertain effects
starting in an uncertain initial state it must be ensured that they work correctly in all
possible situations.

The third requirement—alternative control flow—yields from the support of un-
certainty in the initial state and in service effects. Invoking the service to determine
the issuing credit card company based on the credit card number leads to several
possible states. Based on the actual state, different service must be invoked to per-
form the payment. But determining the actual state can only be done when enacting
the composition and invoking the services. To create compositions that work in all
possible states it is necessary to support XOR-splits that lead to alternative control
flows.

The fourth requirement—creation of new variables—results from the fact that
in the data flow of a composition new data is created on the fly. Variables hold the
output of service invocations. E.g. the service to determine the issuing credit card
company for a given credit card requires a variable to hold the new credit card com-
pany. As one does not know prior to composition which variables are necessary (this
depends on the actually selected services), variables need to be created on the fly dur-
ing composition. This is complicated and often not possible in automated planning.
This limitation of the planning model, already criticised in [28], simplifies planning.
As all the variables are known, all possible service invocations can be calculated in
advance. Services that are not invocable because the necessary variables for input or
output parameters are missing, can be pruned.

Hence, in this planning model all variables used during composition must be de-
fined in advance. This includes also intermediate variables that are neither used in the

104 M. Kowalkiewicz et al.

input nor in the output. Defining all necessary variables requires a lot of information
about the service landscape and at least a rough idea of how the composition could
look like (e.g. which services might be used). For a realistic composition approach
it is therefore required that activities can create new variables and that the service
composer takes these into account.

Recently, several extensions to heuristic search algorithms were proposed to sup-
port some of the required features [72, 58, 34, 88]. But all of them are based on the
restricted planning model imposed by the Planning Domain Description Language
(PDDL) and thus are not able to created intermediate variables [28]. LPG [72] per-
forms heuristic search in plan space instead of state space. The nodes of the search
space are (partial) plans and transitions between them are plan refinement operations
(e.g.: adding an additional service invocation). LPG is a temporal planner and hence
supports parallel control flow. Compositions are partially ordered and durations are
assigned to service invocations. LPG supports optimisation for duration and other
numerical properties. It can not deal with uncertainty and it cannot create alterna-
tive control flows. Sapa [58] is also a temporal planner and supports optimisation
for duration and numerical properties. But unlike LPG it does perform search in
state space. In that regard it is very similar to FF and Metric-FF. Sapa uses A* as
the search strategy. In contrast to Enforced Hill-Climbing is A* complete and opti-
mal if an admissible heuristic is used. We did not use A* because you have to trade
in performance for completeness and optimality. Sapa does not support uncertainty
and the creation of alternative control flows. Conformant-FF [34] and Contingent-FF
[88] are both extension of the original FF planner. They extend it by functionality for
conformant planning and contingent planning. Both work with uncertainty through
the notion of belief states. A belief state is equivalent to our extended state defini-
tion and incorporates a set disjunction-free states. It represents the possible states.
For Conformant-FF the main difference to FF is the handling of the belief states:
Planning starts in a set of possible states and is finished if all the possible current
states satisfy the goal. It creates conformant plans without alternative control flows
and is therefore not usable for automated service composition. Contingent-FF on the
other hand creates contingent plans that include alternative control flows. It is quite
similar to out approach. Through its more efficient representation of possible states
and further optimisations it has some advantages over our approach. But it does cur-
rently not support parallel control flow and alternative control flows are not merged
resulting in tree-shaped compositions.

In the following, a composition algorithm that overcomes all these limitations
will be presented. Before starting with the description of the algorithm, the notions
service composition, and service request are introduced.

Definition 12 (Service request). A service request R = (a0, g,SD) is a triple
consisting of the initial state a0 inEstate, the goal g ∈ E and a service domain
SD. A state is a logical expression. This concept is refined later. A service domain
SD = (S, o) consists of a set of service operations S and ontology describing the
concepts used to specify services.

5 Service Composition and Binding 105

Definition 13 (Service composition). A service composition c is a list of service
invocations c = 〈i1, . . . , ik〉. A service request is fulfilled by a service composition
that starting from the initial state reaches a state that satisfies the goal state by
subsequently invoking the services from the composition.

Enforced Hill-Climbing

Our algorithm is based on enforced hill-climbing [89]. It is a forward heuristic search
in state space. State space is the search space that is spanned by the states and the
transitions in between them.

Definition 14 (Direct successor). A state a has a direct successor a′, written as
a → a′, if a service invocation i exists and γ (a, i) = a′. The successor relation
can be inductively extended to indirect successors →+=→ ⋃{(a, a′′)|(a, a′) ∈→
∧(a′, a′′) ∈→+}.

Enforced Hill-Climbing is an extension of Hill-Climbing. Hill-Climbing uses a
heuristic function h : Estate × E → R+

0 to select states until the goal is reached. The
heuristics h(a, g) delivers an approximation of the distance (measured in numbers
of services to invoke) of the state a to the goal g. Starting with the initial state, a
new state is selected from the direct successors. The first successor that is, according
to the heuristic, better than the current state is selected and assigned as the new
current state. This process is continued until the current state satisfies the goal state
or search fails. Given an admissible heuristics and a mechanism to prevent visiting
states multiple times, the algorithm always terminates. It terminates successfully if it
reaches a state that satisfies the goal state. It fails if a state a, which is unequal to g,
is reached so that no direct successor a′ with h(a′, g) < h(a, g) exists. This means
that the heuristics estimates every direct successor to be farther away from the goal
state than the current state.

Hill-Climbing does not create optimal compositions and it is incomplete. Fig-
ure 5.12a illustrates the reason for the in-optimality. Displayed are states, their heuris-
tic values, and possible state transitions. If the state with heuristic value 2 is evalu-
ated first, it is selected even though a shorter path exists. Another problem is the
greediness of Hill-Climbing. Greediness means that optimisation is done locally

Fig. 5.12. Hill Climbing is not optimal (a) and incomplete (b)

106 M. Kowalkiewicz et al.

without taking the path to the current state into account. This is only of impor-
tance if a cost function is associated with state transitions. Otherwise the admis-
sible heuristics guarantees that greediness does not affect the composition result.
Figure 5.12b demonstrates why Hill-Climbing is incomplete: If the upper path is
taken, composition fails after the first state with heuristic value 1 as no direct suc-
cessor with a better heuristic value can be found. Such a state is called a local max-
imum.

Enforced Hill-Climbing solves the problem of local maxima by switching to
breadth-first search if it gets trapped in a local maximum. This works as depicted in
Fig. 5.1. If the evaluation of a state shows that it is not better than the current states all
its direct successor are added to the end of A′. Hence when all direct successors are
evaluated and none was better than the current state, Enforced Hill-Climbing starts
evaluating the successors of the successors. This is continued until either a better
state is found or no reachable states are unevaluated and composition fails. In the
situation from Fig. 5.12b Enforced Hill-Climbing switches to breadth-first search
in the state with no better direct successors. Through breadth-first search the state
with heuristic value 0 (the goal) is found and it can finish successfully. Regardless
of this extension is Enforced Hill-Climbing still incomplete but termination is still
guaranteed as breadth-first search always terminates. Figure 5.13 shows that compo-
sition fails if the upper path is taken. The upper path is a dead end and the algorithm
is not able to turn around and leave it. As termination is always guaranteed, one
approach to deal with incompleteness, as proposed by [89], is to switch to another
complete but slower search algorithm (e.g. A*) if Enforced Hill-Climbing fails. The
enforcement extension of Hill-Climbing does not affect the in-optimality of the al-
gorithm.

Listing 5.1. Enforced Hill-Climbing

$a = initial state$
$c := $ empty composition
while $\lnot (a \models g)$

$A’’$ = new Queue
enqueue($A’$, $\{a’| a \to a’ \}$)
for $a’ \in A’$

if $h(a’, g) < h(a, g)$
add(c,i) with $\gamma(a,i) = a’$
$a = a’$
goto 3

else
enqueue($A’$, $\{a’’| a’ \to a’’ \}$)

end
end
composition failed

end
composition successful

5 Service Composition and Binding 107

Fig. 5.13. Enforced Hill Climbing is incomplete

Fig. 5.14. State space without and with parallel selection

5.4.4 Extending Enforced Hill-Climbing

Enforced Hill-Climbing does not support any of the aforementioned requirements.
Uncertain effects or initial states cannot be handled by creating alternative control
flows. Compositions are strictly sequential and no variables can be created during the
composition. In the following we present how each requirement can be addressed.

Implementing Requirement 1: Parallel Control Flow

The first step towards parallel control flow is to support the parallel selection of
multiple services. Figure 5.14 illustrates that this leads to a denser search space as
more state transitions are possible. But at the same time paths become shorter.

To invoke services in parallel it must be ensured that they can actually work in
parallel. First this means that services where one service depends on the outcome
of another service cannot be invoked in parallel. This can be ensured by extending
the invocability definition to sets of services: a set of services is invocable in a given
state if every service is invocable in the state. But this definition is not sufficient as
two invocable services may be in conflict. Before we can define invocability for sets
of services we need to define what it means if two service invocations are in conflict:

Definition 15 (Conflict). Two service invocations i1 = (s1, Z1) with o1 =
(I1,O1, pre1, eff 1) and i2 = (s2, Z2) with o2 = (I2,O2, pre2, eff 2) are in conflict
if 3:

• o1 deletes the precondition of o2: ¬x ∈ eff Z1
1 ∧ x ∈ preZ2

2

3 x ∈ p denotes in the following the atom x that is part of formula p.

108 M. Kowalkiewicz et al.

• o1 creates a fact whose negation is the precondition of o2: x ∈ eff Z1
1 ∧¬x ∈ preZ2

2

• o1 and o2 have inconsistent effects: x ∈ eff Z1
1 ∧ ¬x ∈ eff Z2

2

A set of service invocations I = {i1, . . . , in} is in conflict if two services ii (1 ≤
i ≤ n) and ij (1 ≤ j ≤ n) exists which are in conflict.

Based on this notion we can define invocability and invocation for service invo-
cation sets:

Definition 16 (Invocability of service sets). A set of service invocations is invocable
if each service invocation is invocable and it is conflict-free. Given a set of conflict-
free service invocations I = {i1, . . . , in} invocation of I is equal to the sequential
invocation of all ii (1 ≤ i ≤ n) in arbitrary order. The state transition function can
be extended accordingly: γ (a, I) = a′.

To support the parallel selection of multiple services one modification of En-
forced Hill-Climbing is necessary: Line 8 where the new service is added to the
composition must deal with the extended state transition function γ (a,S). More
than one service can be added to a composition at the same time. As the parallel
selection should be reflected in the resulting composition, we need to modify our
composition definition. The easiest way to do that would be to extend the previous
list of services to a list of service sets. But with respect to further additions we choose
another definition:

Definition 17 (Extended composition). A composition C = (S,
cond≺) consists of a

set of service invocations S and a partial order
cond≺ between them. For two service

operation oi, oj ∈ S an ordering oi
cond≺ oj is defined if oi was added to the compo-

sition before oj . Here cond is that part of the effect of oi that is necessary to invoke

oj . Likewise, oi

cond�≺ oj if both were added in the same step.

Implementing Requirement 2: Uncertainty in Initial State and Service Effects

States, preconditions, and effects must include disjunction to support uncertainty.
Disjunction in states is not only used to express uncertainty about the initial state. It
also used to express several distinct goal states. Disjunction in the precondition of
a service allows to express that the service is invocable in different situations. This
does not increase the expressiveness as this can be simulated by multiple services.
Disjunction in service effects can be used to express uncertainty about the service’s
outcome. To work with these richer expressions, we introduce a set-based represen-
tation of logical expressions with disjunctions:

Definition 18 (Set-based representation of logical expression). Given a logical ex-
pression a its disjunctive normal form can be expressed as a set aset = {a1, . . . , an}
of disjunction-free logical expressions. Here each ai represents one conjunction of
the disjunctive normal form.

5 Service Composition and Binding 109

A logical expression and its set-based representation can be used interchange-
ably. When a distinction is necessary we will name the set-based notation aset. When
speaking about a state and its set-based representation it is helpful to think of the set-
based representation as a set of possible states. The definition for state satisfaction
needs to be extended accordingly:

Definition 19 (Satisfaction). A state a satisfies another state g if ∀ai ∈ aset ∃gj ∈
gsetai |= gj .

Hence, a set of possible current states satisfies a set of allowed goal state if every
possible current state satisfies at least one allowed goal states. Now we have devel-
oped the foundation to represent uncertainty. Yet it is unclear how we can actually
deal with uncertainty during planning. In automated planning two approaches have
been developed: conformant planning and contingent planning. Using conformant
planning, additional service invocations are added that ensure the correct working
of the composition, without actually determining the current state or the actual ef-
fects of service invocations. While this is a simple model, it is often not practicable.
For example instead of first determining the correct credit card company and then
charging the credit card only with the correct payment service, it is tried to charge
the credit card using each payment service. While, hopefully, the credit card is only
charged once, the other services may charge a fee making the payment process very
expensive. Conformant planning makes most sense when controlling robots that lack
sensors. In business scenarios another approach is more practicable. Contingent plan-
ning introduces the ability to sense the actual value of fact during run-time and then
continue accordingly. This means after determining the credit card company for a
credit card, the actual value is sensed during run-time and then the correct service is
invoked. This is a viable approach. Hence, contingent planning is required to handle
uncertainty in the initial state and service effects.

Implementing Requirement 3: Alternative Control Flow

In the previous section, we extended the notion of states to include uncertainty. Ser-
vice effects can now include disjunction as well. This means that we can actually
reach several alternative states by invoking a service. To support contingent planning
it must also be possible to invoke a service if it is only invocable in some of the
current states. Let us look at the payment part of the book’s use case scenario.

After registering the domain, the provider wants to charge the customers. To do
this, it relies on the help of services provided by payment processing companies. To
allow different payment options (various credit cards, charging from a bank account,
etc.) services from several companies are used. Depending on the selection by the
customer, the correct one is selected. This can only be done after planning during the
enactment of the composition, as only then the necessary information is available.
Hence, during planning we need to deal with the inherent uncertainty.

Figure 5.15 illustrates this situation. Invoking the service to determine the credit
card company leads here to two possible states.4 In the first state, the Pay1 authen-

4 In reality this might be more, but two is sufficient for a presentation of the idea.

110 M. Kowalkiewicz et al.

Fig. 5.15. An extended state transition

tication service is invocable and in the second state the Pay2 payment service is
invocable. Invoking them only changes the state in which they were invocable. As
multiple services may be selected (see Sect. 5.4.4) both services can be selected in
parallel changing both states at once. To support this notion, invocation and invoca-
bility need to be extended:

Definition 20 (Invocability). A service invocation i = (s, Z) with o = (I,O,

pre, eff) is invocable in a state a if ∃ai ∈ aset∃prej ∈ presetai |= prej . Invoking
a service s with a variable assignment Z in a state a leads to a state transition.
This can be defined by a state transition function γ (a, i) = {ai |ai ∈ aset,∀prej ∈
preset, ai �|= prej } ∪ {ai ◦ eff |ai ∈ aset, ∃prej ∈ preset, ai |= prej }. The operation
ai ◦ eff = {ai ∪ eff +

j \ {x|¬x ∈ eff −
j }|eff j ∈ eff set} applies the effect to one logical

expression.

Invoking a service with uncertain effects results in several possible states. If sub-
sequent services cannot be invoked in all states, an XOR-split is added to the com-
position. In our example this is the case after determining the credit card company.

For our composition algorithm it is irrelevant which path from Fig. 5.15 is actu-
ally taken, because only necessary orderings between service invocations are added.
This is done by linking two service invocations only if one produces the precondition
of the other or if they are in conflict. Formally:

Definition 21 (Causal links). For two service operations p1 = (I1,O1, pre1, eff 1)

and o2 = (I2,O2, pre2, eff 2) a link o1
cond≺ o2 exists if:

5 Service Composition and Binding 111

• cond ∈ pre2 ∧ producer(o1, a, x) ∧ x ∈ cond where producer(o, a, x) is the
relation of term x from state a produced by service operation o,

• or o1 and o2 are in conflict.

For a link cond defines the logical condition that must hold in order to follow this
link.

Often it is not only necessary to create alternative branches but to also merge
them later. In our example this is necessary after payment has been performed. A first
approach to merging might be to detect equivalent states and unify them to one state.
In Fig. 5.15 states E and F seem to be merge-able be merged because they represent
the same fact: payment has been performed. In reality, things are not that easy and
calculating state equivalence is hard and may be impossible. We can only merge
states which are exactly identical. This is unproblematic as in the end we are not
interested in merging states but merging control flows. This is a lot easier: Control
flows can be merged if a service that is selected is invocable in all control flows.
As we still need to keep even equivalent states, this affects performance and space
consumption. But it does not prevent merging control flows.

The interesting point about introducing only necessary links is that it renders
the parallel selection of service unnecessary. As only necessary links are added, two
service that can be invoked in parallel will be composed as running in parallel even
if they are selected subsequently. We are still using the parallel selection as it is
currently unclear whether its denser search space is a disadvantage or its shorter
search paths are an advantage.

Implementing Requirement 4: Creation of New Variables

Creating new variables is currently not supported by most planners. This results not
only from limitations of the language used to describe requests [28] but it also greatly
simplifies creating the composition. If all variables are known in advance it is easy
to determine which services can be invoked. To solve this problem we need to allow
the creation of new variables, if a matching variable for the output of a service does
not exist. But the unrestricted addition is problematic as this yields a possibly infinite
set of states and makes planning semi-decidable [41, 62]. Thus we are introducing
a very restricted form of variable creation. A variable may only be created if no
variable of the same type already exists. While this keeps the problem decidable it
may be too restrictive as it fails if two variables of the same type need to be created.
We are currently not allowing the deletion of variables, as we have not encountered
any practical use for it.

5.4.5 A Heuristic for Extended Enforced Hill-Climbing

As the heuristics guides the search it is crucial for the performance of the composer.
An approach to find a heuristics for a problem is relaxation. The original problem is
relaxed (made simpler) and the size of the relaxed solution is used as the heuristics for

112 M. Kowalkiewicz et al.

Fig. 5.16. A planning graph

the original problem. This approach was also used for enforced hill-climbing. The
planning problem is relaxed by ignoring negative effects. Then the graphplan [27]
algorithm is used to find a solution for the relaxed problem. In the following we will
first detail this algorithm, then we will show how we adjusted it and finally we will
look at the complexity of this heuristic.

Original Heuristics Used in Enforced Hill Climbing

graphplan is a planning algorithm, which separates planning into to phases: graph
building and solution extraction. In the graph building phase a planning graph is built.
It is a bipartite, directed graph. Figure 5.16 illustrates such a graph. The two different
kinds of nodes are fact and activity nodes. Fact nodes (rectangular) represent atoms
and activity nodes (circular) represent service invocations. The planning graph can be
separated into different layers according to the order in which services are invoked
and facts added to the different layers. A fact layer represents a state. Hence, fact
layer 1 is the initial state.

Enforced Hill-Climbing was originally developed together with the relaxed
graphplan heuristic [89]. Essentially it solves a simplified version of the composi-
tion request using the graphplan planning algorithm [27]. We take the length of the
generated composition as the heuristic. graphplan works by first creating a planning
graph and then extracting the solution from it. The relaxation or simplification of
the problem results from ignoring the negative effects of service invocations. In the
presence of negative effects back tracking is necessary during solution extraction. As
negative effects are ignored, the heuristics can be calculated in polynomial time [89].
Starting from the initial state all invocable services (in this case s1 and s2) are added
to the first activity layer. This activity layer produces a new fact layer including all
the effects of s1 and s2. Now a new service s3 is invocable. The resulting fact layer
now includes our goal (e.g. f 6) and we are finished with building the graph. The

5 Service Composition and Binding 113

original planning graph from graphplan additionally contains mutual exclusion re-
lations between two activities or two facts if the activities are in conflict or if the
facts only result from conflicting activities. If negative effects are ignored no mutual
exclusion relations will be added as all conflicts emerge from negative effects.

After building the planning graph a solution needs to be extracted. For this pur-
pose backward search is performed. Starting from the goal state, all service invo-
cations in the previous layer are selected that contribute to goal. In the next step
producing service invocations are selected for the facts required by the previously
selected service invocations. This is continued until the initial state is reached. The
total number of service invocations selected is then taken as the heuristic value for
distance from the initial state to the goal.

Advanced Heuristics

The heuristics used here is not an extension but rather a simplification of the original
heuristic. FF is a total-order planner, hence to get a sensible heuristic estimation
for the distance from a given state to a goal state, it makes sense to use the length
of a sequential solution for the relaxed problem. Because of this, it is necessary to
perform the solution extraction phase.

As the presented composition algorithm generates partially ordered composi-
tions, the length of a sequential solution for the relaxed problem is not a good idea.
Actually it can lead to wrong results, as this heuristics is not admissible. A sequential
solution for the relaxed problem can be significantly longer than a partial ordered
solution of the real problem. This over-estimation is forbidden for an admissible
heuristic. But by skipping the solution extraction phase and using the number of ac-
tivity layer as the heuristic, we find a heuristics for our extended version of enforced
hill-climbing:

Proposition 1. The number of activity layers in a planning graph for a relaxed plan-
ning problem is an admissible heuristics h : Estate × E → R+

0 for the real distance

d : Estate × E → R+
0

of the initial state to the goal of the original problem.

Proof: We need to show that for every two states a1 and a2: h(a1, a2) ≤ d(a1, a2).
We can distinguish three cases:

1. Two service invocations are necessary, but they are in conflict. In this case, they
need to be sequentialised in the original problem. In the relaxed problem no
conflicts arise and the service invocations can happen in parallel. Therefore in
this case the number of activity layers can only be smaller than the length of the
optimal solution for the original problem (h(a1, a2) ≤ d(a1, a2)).

2. Two service invocations are necessary, but one depends on the effect of the other.
In this case, they need to be sequentialised in the optimal solution to the original
problem and in the planning graph (h(a1, a2) = d(a1, a2)).

114 M. Kowalkiewicz et al.

3. The planning graph contains unnecessary activities. If an activity layer contains
only unnecessary activities, the number of activity layers could be larger than
the length of the optimal solution. But this can not happen. Given an activity
layer Ai = {u1, . . . , un} containing only unnecessary service invocations uj

and the following activity layer Ai+1 = {n1, . . . , nm, un+1, . . . , up} containing
unnecessary and necessary service invocations uk and nl . Then for each nk at
least one fact fm in the previous fact layer exists that must be produced by one
uj ∈ Ai . Then uj is not unnecessary and Ai does not only contain unnecessary
service invocations (h(a1, a2) = d(a1, a2)).

To summarise, the only case where the number of activity layers in the planning
graph for the relaxed problem differs from the length of the optimal solution for the
original problem is if two necessary service invocations are in conflict. They can be
selected in parallel in the relaxed problem but need to be sequentialised in the original
problem. Hence, the number of activity layers is smaller or equal to the length of the
optimal solution.

5.4.6 Reasoning & Matchmaking for Service Composition

In Sect. 3.5 we introduced two different forms of matchmaking called matchmaking
on capabilities and matchmaking on preconditions that are useful for an automated
service composition approach like the one we presented above. Using run-time com-
position, two additional reasoning tasks are required. We will present them in the
following.

Virtual Invocation of a Service

When creating a service composition at run-time, it is necessary to know what hap-
pens if a service is invoked. Of course, we cannot actually invoke the service. We
need to simulate the invocation by only applying the service effects to the current
state. The method computes a new state as a result of applying the effects and post-
conditions of the given service to the state given as parameter. The state is given as
input parameter. The variable binding must be given as input, to distinguish between
the (possibly many) different substitutions.

Check if a State Is a Goal State for a User Request

During composition we must be able to check whether the current state is a goal
state. If this is the case we have found a service composition that fulfils the user’s
request. The method checks if a goal is resolved in a certain state. The state and goal
id are provided as parameters.

5 Service Composition and Binding 115

5.5 Service Binding

5.5.1 Binding by Selection

The open architecture of SOA environments enable the utilization of a multiplicity of
services with an unlimited number of characteristics, frequently denoted as the ser-
vice landscape. Due to different organisational goals and application requirements,
participants in decentralised SOA environments have diverse perspectives, possibly
oppositional objectives, and possibly competing interests. Therefore, service quality
requirements are varying depending on the individual service request.

A service provisioning platform should be able to select and integrate the most
suitable service implementations into an end-to-end service composition. It therefore
needs to compare alternative implementations for the same kind of service, which
only differ by their non-functional properties. Finding the most suitable service im-
plementation essentially means to match service requirements and offered service
capabilities. Since capabilities are varying, just like service requirements, it is not
sufficient to decide on the data provided during registration only.

Because of this, SOA environments with a multiplicity of services from different
origins and with changing characteristics demand an automation support for service
selection. How can this service selection be performed?

5.5.2 Binding by Agent Based Negotiation

One of the solutions in this area, adopted from humans when faced with the need
to reach agreement on a variety of issues, is to make use of negotiation. Negotiation
is a process, by which a joint decision is made by two or more parties. The parties
first verbalise contradictory demands and then move toward agreement by a process
of concession making or search for new alternatives. In this process, a party tries to
convince another party to act in a particular way by making proposals, trading op-
tions, and offering concession [122]. Automation support for intelligent negotiation,
by which participants come to a mutually acceptable agreement on some matter, can
be provided by software agents.

Software agents are computer systems capable of independent, autonomous ac-
tion on behalf of their users or owners. They are able to figure out what needs to be
done to satisfy design objectives, rather than constantly being told what to do [207].
Agents are characterised by autonomy, communication, and collaboration capabili-
ties. This means that agents can act independently without user interventions based
on intelligent behaviour models in pursuance of a goal. For this reason, agents have
the ability to communicate with other agents. Such interactions can vary from simple
information exchanges to cooperation and coordination and is the base for managing
inter-agent dependencies at run-time.

Software agents are a promising technology and their autonomous behaviour is a
key capability to support automated negotiation. It can significantly reduce the time
that is necessary to select a suitable service implementation since it allows mak-
ing a large number of transactions within a small amount of time, as opposed to

116 M. Kowalkiewicz et al.

Fig. 5.17. Aspects of automated negotiations

direct communication between humans (manual negotiation), which takes consider-
ably more time.

Agent based negotiation facilitates dynamic choice of negotiation commitments
and enables adjustment of negotiation behaviours at runtime [122]. Similar to manual
negotiations, for automated negotiations a broad range of issues has to be considered.
This includes issues about the necessary negotiation interactions, characteristics of
the negotiated services, and issues about the behaviour when decisions have to be
made. A commonly recognised approach (presented by [98]) to logically structure
this area is to decompose automated negotiation into three broad topics: negotiation
protocols, negotiation objects, and decision making models (Fig. 5.17). To each of
these topics a deeper insight will be given below.

Negotiation Objects

Negotiation objects are described by the range of issues over which participants must
agree. The object may either contain a single issue, such as price, or may cover hun-
dreds of issues related to price, quality, timings, penalties and so forth. Negotiation
objects in SOA environments are the provided services itself. A number of classifi-
cation schemes exist to characterise and structure services features for negotiation.
For example, services can be characterised by a number of attributes that can be
classified as follows:

• service-specific attributes, such as functional and non-functional parameters, qual-
ity of service parameters, or other technical specifications;

• transaction-specific attributes that are generic for the service and encompass
business-related parameters, such as price, penalties and so on.

Moreover, attributes may be:

• non-negotiable having a fixed value, or
• negotiable having multiple characteristic values.

5 Service Composition and Binding 117

Fig. 5.18. Three dimensional negotiation space of a service negotiation object

In most scenarios, parties that have to find an agreement about a service do not just
focus on one attribute of an object (i.e. price) but are rather interested in multiple
aspects of a service. In order to represent this complexity, each attribute can be asso-
ciated with a dimension. The entire number of dimensions spans a vector space that
formally characterises an object and represents the negotiation space (also called
negotiation domain) for the negotiating participants [122]. Figure 5.18 shows an ex-
ample of a three dimensional negotiation space that describes a service by three
attributes, namely: service response time, price per service invocation, and amount
of penalties that applies if the service response time is higher than agreed.

Decision Making Models

The decision making model embodies the decision making apparatus, which is em-
ployed by the participating software agents to achieve their objectives. It governs the
agent’s general behaviour and best course of actions and policies to achieve a goal.
For this reason a sequence of actions, e.g. making offers and react on responses, must
be followed. This is called a negotiation strategy. The sophistication of the decision
making model and the decisions that have to be made, are influenced by the negoti-
ation protocol in place, by the nature of the negotiation object, and by the range of
operations that can be performed on it [115].

With the model of negotiation space (in Fig. 5.18), the question remains how soft-
ware agents find a mutually acceptable combination of service attributes, whereas
each of the unlimited number of coordinates of the negotiation space represents a
possible service configuration. Participants are only willing to make agreements in
limited areas of the negotiation space. In order to find acceptable attribute combi-
nations, participants’ agents suggest specific points in the negotiation space and ter-
minate when a mutually acceptable configuration is found. This formalism abstracts
automated negotiation to ‘moving from one point of the negotiation space to another
one in order to find mutual acceptance’ [98]. In the field of software agents this mov-
ing process is called the negotiation strategy or decision making model of an agent.

118 M. Kowalkiewicz et al.

Fig. 5.19. An example of a two-dimensional negotiation space

In the simplest case the negotiation strategy is rather static and the software agent
can either accept or reject exchanged configuration proposals.

In order to evaluate individual configurations, distinct ratings for certain areas
in the negotiation space are defined. Figure 5.19 illustrates a possible negotiation
space, where the attributes service response time and price per service invocation
are open for negotiation. The vertical striped area represents the service requester’s
and the horizontal striped area the provider’s acceptable negotiation space. Only re-
sponse time-price combinations that are within the acceptable negotiation space of
both participants lead to a commonly acceptable agreement (overlapping area in the
negotiation space).

The process of automated decision making becomes even more complex, if the
negotiation space is extended or decreased by launching or removing attributes dur-
ing the negotiation. However, random proposal making and evaluation is very time
consuming and inefficient as no feedback, whether the proposal is close to the ac-
ceptable negotiation space or why the proposal is unacceptable, is made [174]. In-
stead of random negotiation space movement and ‘picking points’, the negotiation
process can be improved by granting participants the flexibility to change the values
of the negotiation object attributes. This can either be made by critiques that explain
which part of the proposal is unacceptable or by counter proposals—e.g. as alter-
native proposals generated in response to previous proposals. Proposals, critiques,
and counter proposals express what a participant wants, based on the negotiation ob-
ject. This advanced object based negotiation model can even be extended by giving
agents the capability to provide arguments that support their stance (argumentation
based negotiation). The agent can thereby justify its attitude toward a particular is-
sue or persuade the opponent by constructive arguments that make a deal possible.
As a result, the agent can modify the recipient’s region of acceptability (negotiation
space). These arguments can include threads, rewards, or appeals. Examples of de-

5 Service Composition and Binding 119

cision making models used for automated negotiation are game theory based models
[140, 167], heuristic approaches [157, 158], and argumentation based approaches
[175, 152]).

A few considerations have to be made when using software agents. Firstly, agents
negotiating services are characterised by autonomy. Hence, the conditions and rules
that influence the agent’s behaviour are private knowledge and not available to other
parties. Agents do not know the reasoning model or the placed utilities of the oppo-
nent’s agent. It is in fact not sure whether a mutual agreement is possible at all and
whether a common acceptable negotiation space exists. Autonomy also presumes
that an agent only knows the agents it communicates with but not whether or not the
opponent agent initiates subcontract negotiations with other agents for that service.
Such parallel negotiation threads are invisible to the initiating agent and can be done
either concurrently or after the negotiations are finished. Moreover, they are indepen-
dent from the initial conversation and can be based on different protocols, decision
making rules or other conditions. Secondly, a critical factor in service negotiations is
the question of how long it takes to reach an agreement and by what time the negoti-
ated service must be executed. It is assumed that both the provider and the requester
have an interest that the time should be reasonable with respect to the value of the
service agreement. Time constraints can be integrated with the negotiating agent or
using the lifetime management facilities of transient services itself.

Negotiation Protocols

Negotiation Protocols define a set of rules that prescribe the circumstances under
which the interaction between agents takes place. [122] calls this the ’rules of en-
counter’. These rules cover the permissible types of participants, e.g. the negotiators
and any relevant third parties, the negotiation states, e.g. accepting bids, negotiation
closed, the events that cause negotiation states to change, e.g. no more bidders, bid
accepted, and the valid actions of the participants in particular states, e.g. which mes-
sages can be sent by whom, to whom, at what stage. Since negotiating agents have
the goal to find a mutual accepted agreement, each negotiation may involve interac-
tions that are based on a sequence of events. As it is difficult and computationally
expensive to design agents that are able to reason about a message’s meaning, a prag-
matic solution to support agent interaction are pre-defined protocols. A negotiation
protocol contains the basic rules for the negotiation process and communication. For-
mally, a protocol is ‘a set of norms that constrain the proposals that the negotiation
participants are able to make’ [98]. Protocols include rules about the temporal valid-
ity of messages, at what times proposals can be made, which values can be set, and
which procedures are necessary to place a bid. Proposals can be private messages
passed between service requesters and providers or they may be broadcast among all
participants. While negotiation protocols are quite different for different categories
of negotiation, they have one thing in common: interaction protocols expand the
scope from single messages to complete transactions, also called conversations or
dialogues. A significant role in defining such protocols and providing interoperabil-
ity between heterogeneous software agents is played by the Foundation for Intelli-

120 M. Kowalkiewicz et al.

Fig. 5.20. UML sequence diagram of the FIPA Contract Net Protocol

gent Physical Agents (FIPA). The organisation specifies several negotiation protocols
and defines an agent communication language that provides mechanisms for adding
context to message contents. In FIPA protocols communications make use of com-
municative acts that tell a receiving agent in which context to interpret the contents
of a message. Below, two of these FIPA protocols are presented as examples. More
information on FIPA negotiation protocols can be found on the FIPA website.5

Contract Net Protocol

Simple and very static ways of coming to an service configuration agreement are ne-
gotiations where the participants can either accept or reject. This class of dialogues
are called contract net approaches and are discussed below. The Contract Net Proto-
col (CNP) is an interaction protocol that is specified by FIPA and illustrated by the
UML sequence diagram in Fig. 5.20.

The negotiation initiator (Agreement Initiator) addresses a call for proposal
(CFP) to a number of providers (Agreement Providers) in order to get a quote for a
service that solves a problem or performs a task, i.e. an application service. The call
for proposal (CFP) has a globally unique conversation id and contains a specification
of the task and possible conditions the initiator is placing upon the execution of it.
The Agreement Providers have the chance to respond on the CFP by making a pro-
posal or refusing to make a bid. They can also deny reacting at all. The Agreement

5 http://www.fipa.org.

5 Service Composition and Binding 121

Initiator receives the proposals from possible Agreement Providers. It can, either im-
mediately after receiving a proposal or after a certain deadline runs off, evaluate the
proposals and select a provider to perform the task. For that reason the Agreement
Initiator sends an ‘accept-proposal act’ to the chosen provider and reject-proposal
acts to the remaining providers.

In FIPA, the messages including proposals are binding to the participant and
require the performance of the task. After completing the task the provider sends an
inform-result respectively an inform-done message to the Agreement Initiator. It may
also send a failure message if the performance of the task was not successful. The
CNP is limited to bidirectional information exchanges and does not involve explicit
negotiations between the Agreement Initiator and the Agreement Provider. It has
no centralised control of the awarding and execution of tasks and evaluations of
proposals are based on personal views. It can be used for simple tasks that can easily
be divided and evaluated and follows a fix accept-or-refuse protocol workflow.

Iterated Contract Net Protocol

The CNP can be extended by integrating recursive negotiations and allowing multi-
round iterative bidding to find a compromise. For this reason, FIPA defines the Iter-
ated Contract Net Protocol (ICNP). Using a CNP the Agreement Initiator can either
accept or reject a proposal after sending a CFP to the provider agents. In the ICNP
the Agreement Initiator alternatively may decide to iterate the process by issuing a
revised CFP to particular Agreement Providers and rejecting the remaining propos-
als. By exchanging modified proposals and counter-proposals, a real negotiation is
possible and a trade-off is more likely. The process terminates when the Agreement
Initiator refuses all proposals and does not issue a new CFP, the Agreement Initiator
accepts one or more of the bids, or the provider agents refuse to bid. The Unified
Modeling Language (UML) sequence diagram in Fig. 5.21 illustrates this.

5.5.3 Service Level Contracting

Beside binding services by agent based negotiation, an instrument that defines the
relationship between service providers and consumers is needed. The key concept in
addressing this issue is Service Level Agreement (SLA). SLA is not a new concept:
the approach emerged in the 1960s as a way of ensuring service quality in engineer-
ing and production and is now the norm for both internally and externally provided
services. The goal of this section is to provide basic background information about
service level agreements and their relationship with service selection and binding.

A service level agreement is a formal, written, concluded for a certain duration
agreement between a service consumer and a service provider, in which the service
provider guarantees the provision of a defined (as regards quality and contents) ser-
vice to the service consumer and in which the service consumer guarantees the return
of a defined financial consideration (mostly compensatory payment). The definition
of the service quality provided by the service provider is regulated by service levels
which are mutually defined, quantifiable and relevant for the service consumer. The

122 M. Kowalkiewicz et al.

Fig. 5.21. UML sequence diagram of the FIPA Iterated Contract Net Protocol

SLA defines procedures that regulate the monitoring and evaluation process as well
as that consequence that applies in case of service level violations.

Classification of SLAs

Several basic types of SLAs can be differentiated. A first basic differentiation of
SLAs can be made based on the legal relationship that exists between the contracting
parties. It can be divided into the case that both provider and requester belong to the
same legal body (internal parts of an organisation or system such as different depart-
ments), and the case that both provider and consumer belong to different legal bodies
(independent from each other such as two independent companies). In literature this
differentiation results in separating between internal service and external service. In
consequence, SLAs can be divided into external agreements (cross-organisational)
and internal agreements (intra-organisational).

The characteristics of an SLA are different depending on whether it is internal
or external. An internal SLA is defined between units and departments of one cor-
poration, thus problems and violations that may occur during service provision are

5 Service Composition and Binding 123

treated differently from those occurring with external partners. Even though sanc-
tions and penalties are less relevant for internal SLAs. The agreed relation between
internal providers and requesters can be externally used as a marketing instrument,
by claiming validated and formal processes in the company as quality property.

In contrast, external SLAs are a stricter type of an agreement. They are realized
as legal contract between different companies, which makes the definition of sanc-
tions, monitoring and reporting mechanisms, and escalation scenarios much more
important.

Another basic differentiation of SLAs can be made based on the content (na-
ture of resource and its degree of abstraction) of the service and the roles of the SLA
participants (function, position, industry). Malu et al. [124] distinguish between busi-
ness SLAs and IT SLAs. Business SLAs refer to the semantics of the service rather
than to system- or application-level metrics. Business SLAs are usually created be-
tween IT service providers and IT service users that use the provided service for
fulfilling non-IT business functions. For example, a business SLA could state that
product orders over 1000 pieces should be received within 15 days of the order, or
within 10 days from payment. Business SLAs need to be formulated in a way that is
understandable by the (non-IT) service user and abstracts IT service metrics to the
specific needs of that user.

In contrast, IT SLAs are related to system or application-level metrics (such as
response time of an individual operation or availability) that are applicable to the
specific services. For example, an IT SLA could state that 90 percent of the opera-
tions executed with a service should complete within 3 seconds. IT SLAs are usually
created between IT service providers and IT service consumers that use the service
either directly in IT systems or (usually after processing, refinement or composition
with other services) resell/re-provide the service to other service users.

Elements, Contents and Structure of SLAs

From the definition and classification of SLAs it can already be assumed that SLAs
are documents that have a consistent structure with recurring elements. SLA mod-
els proposed in literature reveal more or less the same overall structural components
(i.e. [192, 13, 12]). In some models contents and structure vary in detail, some au-
thors emphasise different elements than others, and often elements are differently
named. A consistent catalogue of elements, vocabularies and their meaning has not
established itself yet. Since the numerous elements of a SLA need to be differentiated
from each other and brought into a context, the logical structure of a SLA will be pro-
vided before defining the elements themselves. [100] structures SLAs into ‘two sets
of elements: service elements and management elements’. Service elements define
issues such as the provided service, conditions of service availability, responsibili-
ties of the parties, costs, and escalation procedures whereas management elements
focus on tracking service effectiveness, solving service-related disagreements and
reviewing and revising the SLA. [101] states that

a large part of the current contracts deals with legal (non-IT related) terms
and conditions, such as the scope of work, the legal responsibilities and

124 M. Kowalkiewicz et al.

proprietary rights of the parties, or the modes of invoicing and payment.
[. . .] Another observation is that every analysed contract contains (in a more
or less straightforward way) the involved parties, the QoS parameters, the
raw metrics used as input to compute the QoS parameters, the algorithm for
computing the QoS parameters, the service guarantees and the appropriate
actions to be taken if a violation of these guarantees has been detected.

Overall the following elements of a SLA can be identified: organisational elements,
service-related elements, and management-related elements.

• Organisational elements of a SLA are elements that define the contextual as-
pects of an agreement. By this means a SLA is scoped by its associated organisa-
tional elements. Organisational elements include the subject-matter of the SLA,
involved parties and their roles, associated duration during which a SLA is valid,
and all legal information.

• Service-related elements of a SLA are elements that characterise the different
aspects of the service a SLA is concluded for. This includes the definition of
the service, service parameters, and service levels that are used in the context of
service-related elements of a SLA. If a SLA comprises multiple services these
elements need to be defined for each of the involved services. Service-related
elements include the description of the provided service as regards contents and
interfaces by a domain-specific semantic description (i.e. [54]), the target quality
of the provided service including associated metrics, and the charges and billing
and payment procedures associated with a service.

• Management-related elements of a SLA are elements that address the manage-
ment aspects of the SLA. They comprise of information about reporting, SLA
monitoring and evaluation procedures, a formal consequence of SLA non-confor-
mance, and directives for dealing with such situations.

SLA Lifecycle Management

In order to successfully manage this relationship, the service provider and consumer
need to adopt an organised approach to managing SLA documents during their en-
tire validity. This task is called SLA lifecycle management. Different authors classify
the SLA lifecycle differently into phases. This is a result of different usage and busi-
ness areas. The lifecycle of a SLA can be divided into the following five phases:
SLA creation and negotiation, SLA deployment and fulfilment, SLA monitoring and
evaluation, SLA termination, and finally, SLA explanation and prediction. There are
sub-phases within each phase, i.e. for negotiation or monitoring. Also parties in a
service relationship use advertising and search functions to find suitable agreement
partners, either directly or using intermediaries and repositories. These activities may
precede the first phase of the lifecycle.

In each phase of the SLA lifecycle, different tasks need to be performed. The
first phase, SLA creation and negotiation, addresses the definition and creation of
the SLA document. The provided service has to be outlined and described precisely
and service parameters such as quality of service have to be defined by means of

5 Service Composition and Binding 125

service levels. Also financial regulations such as terms and conditions of payment,
penalties and bonuses have to be agreed on, i.e. by using agent based negotiation. The
result of the SLA creation and negotiation phase is a concluded SLA between a ser-
vice provider and a service consumer. Following the creation and negotiation phase
the deployment and fulfilment phase addresses the set up of a service provisioning
and monitoring system and the deployment of the provided service in accordance
with defined service levels. Fulfilment of the SLA has to be assured by the service
provider during usage of the service and the SLA. It is essential that service providers
are able to meet the SLAs stipulated with their consumers, as SLAs are one of the
main metrics by which requesters judge the quality of the service offered by service
providers. Therefore, SLA monitoring and evaluation are executed in order to control
the service provision and its accordance to the SLA. SLA monitoring and evaluation
is a phase that takes place in parallel to service fulfilment. Service levels defined in a
SLA are measured and compared with actual service levels during service provision.
Consequential actions of service level variations have to be triggered as defined in
the SLA document. Finally, SLA termination describes the phase in the SLA life
cycle in which the service provisions finishes and the SLA is no longer valid. SLA
explanation and prediction examines the SLA and controls usefulness of the regula-
tion defined in the SLA. The objective of this phase is to gather valuable experiences
whether implications in the first phase were appropriate and which improvements
can be implemented in the future.

5.5.4 Example for Negotiation Based Service Binding

To show potential benefits of service binding by negotiation, we demonstrate the
negotiation aspect of the book’s use case scenario. Service composition is offered
here by the service provider (Hostit) in a B2B context. Extending the use case
scenario, we introduce a list of provided services. We also assume that there may
be more than one service consumer and each of them may have different quality
requirements. Our focus her is to aim on the integration of QoS aspects. At the same
time, we do not consider some details such as the dynamic creation of new service
compositions.

Individual service requests may differ in terms of quality requirements. There-
fore, the platform provided by Hostit needs to dynamically decide which compo-
sition of services is most valuable to a requester. A sample request sent to Hostit
may be as follows:

Provide a service for domain name registration, web space, e-mail account
set-up, and payment facilities, whereas the service needs to be available in
less than 60 time units (TU) and costs for setting up the services must be
below 16 monetary units (MU). Based on that request, the Hostit platform
should create a service composition that can fulfil the request.

Services such as CheckDomain can be provided by several candidate service
providers (e.g. Denic, UnitedDomains, or domainPro), while other services

126 M. Kowalkiewicz et al.

can only be provided by one service provider (e.g. CreateWebhostingAccount).
Beside that, some service providers may be able to adjust QoS values, like duration
of execution of their services, while others are not. In some cases, duration of ser-
vices may be dependent on various external factors, and therefore not fixed. By anal-
ogy, some of the service providers can be able to quote different prices/costs, while
others only accept fixed prices/costs. Hence, QoS parameters and costs are variable
or fixed and negotiable or non-negotiable. The CheckDomain service can be de-
livered at different QoS levels, i.e. different duration (DurationX, DurationY,
etc.) and costs (CostX, CostY, etc.), and various combinations of them, while the
CreateWebhostingAccount service has a fixed duration of less than 5 TU and
costs of 0.50 MU.

In case a service composition includes neither conditional nor alternative bran-
ches, the service provisioning platform decides to apply the first-contract-all-then-
enact enactment strategy. The different kinds of enactment strategies are discussed
in Sect. 6.2 in the next chapter.

Since the service composition is abstract, it does not reference specific services.
Therefore, the platform needs to select executable service implementations from a
potentially high number of service providers in the second step. In order to fulfil
this complex task of end-to-end QoS management and service selection, the plat-
form makes use of negotiation for finding the most suitable configuration of QoS
parameter values for all included services.

One of the main problems in this area is the decomposition of QoS parameters
onto the services involved in the service composition and their optimisation to fulfil
the reseller’s business requirements. In the example the overall maximum duration
is less then 60 TU, the CreateWebhostingAccount service takes up to 5 TU,
the CreateDomain service takes up to 30 TU and so forth. Negotiation must find
service implementations for CheckDomain, RegisterDomain, and Credit-
cardPayment that take as little time that the maximum duration threshold of 60
TU holds. Figure 5.22 presents a possible solution found by negotiation to meet the
above described constraints.

As stated above, the services involved in the scenario are from external providers.
Hence, the possibility to maintain the quality of service provision is outside the in-
fluence of the Hostit service composition provider. In consequence it may happen
that services are not satisfying in means of agreed quality, for example, duration of
the denic:CheckDomain service is higher than 1 TU.

While individual compensation mechanisms such as payment of penalties are an
important instrument to deal with such violations with external providers, the con-
tractual obligations with the service requester demand urgent exception handling, for
example a dynamic replacement of the faulty service. Since end-to-end QoS require-
ments are still valid for the service composition, dynamic re-selection mechanisms
must be applied to find an alternative candidate for the service to be replaced. As an
example, the CheckDomain services can be provided by different service providers
as well, i.e. UnitedDomains and domainPro. Denic was initially chosen to be
the involved service provider with service duration of 1 TU and costs of 0.5 MU.

5 Service Composition and Binding 127

Fig. 5.22. A duration configuration that meets an overall duration threshold

The replacement service of the CheckDomain service provided by United-
Domains or domainPro may not have the same service qualities, but it must be
ensured that the end-to-end QoS requirements of the service composition are still
fulfilled. The process of dynamic re-selection is driven by re-negotiation, essentially
a negotiation with the goal of fulfilling overall QoS requirements. Re-negotiation
may have chosen UnitedDomains as replacement provider for the CheckDo-
main service, which leads to a duration of 3 TU and costs of 1 MU for the service,
and therefore to 57 TU and 14.5 MU for the overall service composition. The re-
sulting loss in benefits of the service composition provider may at least partially be
compensated by penalties claimed from the service provider Denic of the faulty
service.

With a general understanding of how services can be composed on a logical
level and bound to existing service implementations, the next chapter will discuss
the issues of composition enactment.

5.6 Semantic Business Process Management

5.6.1 Introduction

The previous sections discussed different strategies to enable individual functionali-
ties as services for a semantic service provisioning architecture. This section shows
another possible service enabling strategy, where semantic descriptions are man-
aged in context of Business Process Management (BPM) [178]. In general, Web
services in combination with business processes are said to be the basis for future
software applications [118]. Hepp et al. [84] were one of the first extending this
approach by combining business processes with semantic descriptions to create a
new discipline—semantic business process management. This section gives a short

128 M. Kowalkiewicz et al.

overview of semantic business process management and outlines a transition strat-
egy to implement it. The following subsection introduces the basic idea of business
process management, as foundation for the upcoming sections.

Business Process Management

In general system theory [201] a system is defined by its border, by its goal or pur-
pose, by its elements, and by the relationships between those elements. An enterprise
is such a system, because it fulfils all those characteristics. An enterprise has a border
to the environment (customers, competitors, market). It also has a goal like creat-
ing a high return on investment or maximizing the shareholder value. An enterprise
consists of many elements and the relationships between those elements. During its
lifetime, the enterprise is restructuring itself in order to adapt itself to a changing
environment.

An enterprise model captures all relevant aspects of the enterprise. It is created to
document the structural and dynamic aspects of the enterprise, but also to plan and
communicate possible changes internally and externally. The structural elements of
the enterprise model are grouped according to their nature into different dimensions
like organisational elements, functional elements, data elements, etc. Different dia-
gram types are used to model the static relationships between elements of the same
dimension. For example, an organisational chart is used to model the formal hier-
archy of power within the enterprise. In contrast, dynamic models define how the
different system elements of the enterprise are working together to achieve the en-
terprise’s goals (or sub-goals). Those dynamic models are called business processes,
workflow processes or executable processes depending on their purpose and level of
abstraction. The enterprise model is usually structured according to an enterprise ar-
chitecture framework like Zachman,6 ArchiMate [53, 196] or ARIS [170, 171]. Such
an enterprise architecture framework defines the dimensions, abstraction levels, pos-
sible element types and relationship types.

Figure 5.23 shows the ARIS framework as one possible example. It distinguishes
5 dimensions, each having 3 abstraction levels. The process dimension in the cen-
tre of the figure links the elements of the other dimensions together. For example, a
process like a business process consists of functions from the functional dimension,
which are executed either by organisational elements from the organisational dimen-
sion or by IT systems from the functional dimension. Each function in the business
process consumes and produces data elements defined in the data dimension. A busi-
ness process also produces products, which are defined in the product dimension.

As mentioned before, the enterprise as a system changes during its lifetime to
adapt continuously to the ever-changing business environment. Changes are initiated
unconsciously or consciously. In the first case, system elements like employees react
spontaneously like providing a discount on a partly damaged product. In the sec-
ond case, changes are carefully planned, implemented, evaluated, and adjusted in a
change program. This cyclic approach of process improvement is known as Deming
cycle [57].

6 http://www.zifa.com and http://www.zachmaninternational.com.

5 Service Composition and Binding 129

Fig. 5.23. The ARIS enterprise architecture framework

Business process management compromises all tasks related to the elements and
models in the process dimension. For example, existing as-is processes are docu-
mented, future to-be processes are planned, executable processes are derived from
more abstract business processes, executed processes are monitored and measured,
etc. Business process management is a complex task requiring very different skills.
For example, a business expert is documenting the as-is processes by interviewing
the process owners and making their knowledge explicit. An integration expert de-
rives executable processes from the business processes modelled by the business
expert. A software engineer implements missing functionality or customises an ex-
isting software package. An executive is reviewing the business processes on a very
abstract level to judge how much effort is needed to cooperate with another enterprise
or how much money can be gained by outsourcing certain business processes.

Taking a more abstract view on business process management shows that there
is a top-down as well as a bottom-up approach. For example, planning a new busi-
ness process and deriving an implementation is top-down, whereas extracting process
models from execution log files is bottom-up. The following sub-section explains the
different technologies involved in a top-down approach to business process automa-
tion. This helps to identify the benefits of semantically described business services.

Business Process Automation

The field of business process automation generally aims to reduce cost of business
processes by raising the efficiency of certain tasks through automation. With respect

130 M. Kowalkiewicz et al.

to the introduced topic of business process management, the desired area of automa-
tion described here is to reduce the effort for creating an implementation out of the
abstract business process model.

In order to better understand the exact procedure of transforming the business
process model in an executable implementation, the concept of Model-Driven Archi-
tecture (MDA) is used. The model is structured in three levels of abstraction, which
can be adopted based on the area of business process modelling.

Models in the Computation Independent Model (CIM) level provide a very ab-
stract view on the process. It is independent of any kind of technology. It represents
the business view on the process. This model is produced by business experts. That
means that the process model consists of business functions supported by abstract
services, but it is not further specified, if these abstract service are later provided by
a human or implemented using any kind of software. The CIM is the basis for the
other two models (Platform Independent Model (PIM) and Platform Specific Model
(PSM)) and therefore the foundation for a later technical implementation. Typical
modelling languages in context of business process modeling are EPC (see next sec-
tion), BPMN, and value-added chain diagrams.

The PIM is a refinement of the CIM. It is enriched with general technical de-
tails and the model provides already an awareness of software in general. The PIM
is typically created by IT experts but is still abstract enough, that business experts
can cope with it. The added details are necessary for a technical implementation but
on a very generic level, so that the model itself is in no way dependent on any spe-
cific technology. For example, the business process model on the PIM level consists
of business functions, which are supported by software service. However, the model
does not contain any details on the implementation technology to use, so it is not said
that the software services must be implemented using Web service technology. This
platform independence allows using the same business process model as a base for
different implementation. This is important in enterprise computing, because usually
a big company has heterogeneous technology in the service infrastructure. In such a
case having a platform independent model is an advantage, because different imple-
mentations can be derived from this single source of truth. Therefore, the PIM model
is the base for implementation.

The PSM is the most concrete model. Compared to the PIM, it is refined in terms
of a specific technology platform. For example, the introduced software services of
the PIM are mapped to specific Web services, defined by WSDL descriptions. The
usage of a particular communication protocol like SOAP therefore includes the clear
definition of messages exchanged between the services. The control flow is repre-
sented with languages like Business Process Execution Language (BPEL) or XML
Process Definition Language (XPDL), since EPC or BPMN are not suitable for these
technical descriptions. Although there is tool support for the transformation from
PIM to PSM (e.g. Stein and Ivanov [183] describe a semi-automated EPC to BPEL
transformation) there is still manual work necessary to create an executable BPEL
process. For example, the mentioned data transformations between the different mes-
sage types has to be done manually and also some parts of the control flow have to
be further detailed like adding conditions to split and join statements.

5 Service Composition and Binding 131

As discussed above, the pure functional CIM is firstly transformed to PIM and
then into PSM. Business process automation here aims at lowering manual effort
when creating the PSM out of the PIM. Despite the fact that partial automatic trans-
formations are available, eliminating manual work is the goal. As mentioned in the
previous section, the business process models are permanently subject to change.
Business experts constantly change the CIM and PIM models to adapt to the busi-
ness environment. The underlying implementation (PSM models) must be regener-
ated each time the CIM or PIM is changed. In reality, the PIM is the starting point
for modifications, as it is abstract enough to be handled by business experts. Never-
theless, as of today the transformation from PIM to PSM has still to be done partially
manually, which is slow and may harm the consistency of the models.

Different modelling languages are used on the different modelling levels. EPC
[102] is a language for business process modelling, which was developed under
supervision of Prof. August-Wilhelm Scheer at Saarland University, Germany in
1992. The EPC language is an accepted industry standard in business process mod-
elling. EPCs are business oriented. They are not suitable for modelling of executable
processes, because of missing implementation specific details like exception han-
dling. As mentioned before, EPCs reside in the CIM and PIM levels of the MDA
paradigm.

An EPC is an ordered graph consisting of six types of elements:

• Events describe the state of the process. Events activate business functions. Each
EPC starts and ends with an event.

• Functions symbolise a certain business activity, which leads to a change of state
and therefore to a certain event. In general, a function is preceded by an event
and followed by an event.

• Relations connect functions and events specifying the actual process.
• Operators are used to split or join the control flow. Different operators like AND,

XOR, and OR are available. Operators, relations, events, and functions together
form the control flow of the process model. The EPC language allows modelling
of the most important workflow patterns [197]. A detailed discussion of the work-
flow patterns supported by the EPC language can be found in [127].

• Organizational Units can be assigned to a function to specify that the given func-
tion is executed by the organizational element. This is known as human task in
other modelling languages.

• Information Objects can be assigned to a function to specify the input and output
data of the given function. The information objects represent parts of a logical
(conceptual) enterprise data model. Typical elements of such an enterprise data
model are customer, contract, and invoice.

Figure 5.24 shows an example EPC defining the business process of placing a
domain order. The modelled process is based on the book’s use case scenario. The
process is started, if the event Place Domain Order is triggered. As a first business
function the login and password are verified. This business function is repeated as
long as login or password is incorrect. Afterwards, the business process continues
with other business functions. It can be seen that various information objects are

132 M. Kowalkiewicz et al.

Fig. 5.24. Example EPC: place domain order

5 Service Composition and Binding 133

consumed and produced by the business functions. At the end, the business process
is terminated with an event.

BPEL [11] is used to model executable business processes. Contrary to EPC,
BPEL provides a more concrete and very detailed technical representation of a busi-
ness process. In BPEL implemented processes can be executed by orchestration en-
gines like Oracle SOA Suite or IBM Websphere. BPEL process models reside in the
PSM level. Section 5.2.3 describes BPEL in more details.

WSDL [44] is used to describe the syntactic interface of Web services. Web
services, more precisely their operations, are the activities described in the BPEL
process. A WSDL file describes the operations and its input and output variables of
a specific Web Service and the binding to its concrete implementation. The BPEL
process references to such WSDL definitions and particularly to its operations to
realize the single activities of the process. More details about WSDL and the con-
nection to BPEL can be found in Sect. 5.2.3. WSDL is described in Sect. 7.4.1.

5.6.2 Motivation for Semantic Business Process Management

The previous section motivated a particular problem in business process manage-
ment. Process models on a more abstract modelling level must always be refined to
create executable models. As outlined before, different people with different skills
are creating the models on the different levels. The more abstract business processes
are created by business experts, who usually have a strong background in business
administration, but less computer science knowledge. In contrast, executable busi-
ness process models are implemented by integration experts or software engineers,
who usually have a computer science or mathematical education. Therefore, it is not
just a pure technical problem, but it also involves mediating between the two very
different user groups. This phenomenon is well known as the business IT gap. Smith
and Fingar [178] envision in their work to not just bridge this gap, but to instead oblit-
erate it. That means, business experts are enabled to create the executable models on
their own without any IT expert support.

A business expert must be able to select appropriate services for its processes.
The business expert must be able to validate, if the business service fulfils the busi-
ness requirements and supports a given business function. Today, service description
approaches miss this semantic information. The gap between business and IT there-
fore remains, even though preliminary work exists on supporting business experts to
select ordinary services [182]. By introducing semantic descriptions in the enterprise
computing technology stack, this problem can be solved completely.

Besides using semantic descriptions for discovering appropriate services for busi-
ness requirements, there are other possibilities to leverage semantic technologies in
enterprise computing. One example is the enterprise model itself, which should be
based on clear semantics. All model types should be grounded in ontologies, so that
intelligent queries can be computed against those models. Another important appli-
cation of semantic technologies is possible during the execution of processes. It can
help to overcome compatibility issues, by using semantic mediation and late service
binding.

134 M. Kowalkiewicz et al.

Fig. 5.25. Semantic business process management use cases

A comprehensive usage of semantic technologies was outline by Hepp et al. [84].
They propose a stack of ontologies to cover all aspects of an enterprise model. This
includes a high level ontology for business processes and a technical oriented on-
tology for executable ones. A detailed discussion of the proposed ontology stack is
presented in [85].

Figure 5.25 illustrates the general problem to be solved by applying semantic
technologies. From an abstract point of view, there are two main use-cases of seman-
tic technologies within business process management. First, an existing enterprise
model needs to be analysed using semantic queries. The enterprise model or parts of
it might be defined explicitly or implicitly. In case of extracting information from ex-
ecution log files, the model is only implicitly defined whereas an organisational chart
representing the hierarchy of power is an explicit definition. The semantic querying
of the enterprise model can be used to identify all business processes affected by
a new governmental regulation. Another example is to check the enterprise model
semantically for compliance to a given rule set like Sarbanes-Oxley Act [49]. The
second application of semantic technologies is in the definition or creation of full
or partial enterprise models. As outlined before, a business expert can be supported
by semantic technologies to select a matching service while designing an executable
process.

Using a semantically grounded enterprise model would be perfect approach if a
company is starting from scratch. As a matter of fact, companies already invested in
business process and enterprise modelling for more than 10 years. Existing models
must be reused to secure the investments made so far. In addition, existing standards
for modelling and process execution must be reused and extended. It is therefore im-
possible to introduce a completely new technology stack, for example by replacing
orchestration engines based on BPEL and XPDL with semantic ones. Instead, ex-
isting engines must be extended to also support semantic models. The model types
must be extended instead of introducing completely new model types, which also en-
sures that only delta training is needed. Such an approach could increase the chance
that semantic technologies will be accepted and actually applied in industry.

The following section describes how semantic technologies could be used in
business process automation. The presented approach takes into account the dis-

5 Service Composition and Binding 135

cussed constraints by extending model types, instead of replacing the technological
stack.

5.6.3 Semantic Technologies for Business Process Automation

For business process automation, it is of utmost importance to preserve existing in-
vestments and to reuse existing models and employees’ competences. The following
section shows how business processes modelled as EPC are semantically annotated.
Such semantically annotated models allow the automated discovery of services for
a particular business function, but it also allows semantically querying the process
space. All examples are described by the EPC notation, since the authors already
implemented the described approach as a prototypical extension of the ARIS SOA
Architect7 product.

In our approach, the business process model is automatically transformed into
an executable process described in BPEL. The BPEL model can be generated by
using and adapting existing approaches [183]. The semantic information needed for
discovering and invoking semantic Web services is then hidden in variables. The
consideration of semantic information is done during run-time by the Semantic In-
vocation Service (SISi), which is a small web application using a semantic execution
environment or a reasoner to discover and invoke a matching Web service. SISi pro-
vides a standard Web service interface described in WSDL so that it can be easily
invoked from another BPEL process. This ensures that the approach outlined here
can be used directly without changing or extending existing business process frame-
works. A reference implementation of SISi is provided on SISi’s homepage.8

SISi’s software architecture is shown in Fig. 5.26. The architecture is a classical
3-tier design [38]. The top layer External Interface Component provides different
external interfaces to SISi’s functionality. At the current point there is only a Web
service interface implemented by the Web Service Interface Module. By reusing ex-
isting Web service frameworks like Axis2 or CXF, it is possible to almost completely
generate this implementation. The interface component receives external calls and
forwards them to the second layer called Core Component. The core component
consists of a Controller Module, which calls the Semantic Discovery Module for se-
mantic Web service discovery. Discovered Web services are called through the Web
Service Invocation Module. The usage of the controller module allows easily extend-
ing SISi with additional functionality like semantic data mediation. For invoking
Web services described by WSDL, again existing frameworks like Axis2 or CXF
can be used.

As of today, there are no frameworks available which provide abstraction from
the actual semantic environment used. Therefore, the core component calls the Se-
mantic Abstraction Interface Module belonging to the Semantic Abstraction Com-
ponent. This module provides a unified interface so that the core component is not
bound to any specific semantic environment or reasoner. Instead, different adapter
modules are provided as part of the semantic abstraction component implementing

7 http://www.aris.com/soa.
8 http://code.google.com/p/semanticinvocationservice/.

136 M. Kowalkiewicz et al.

Fig. 5.26. SISi’s software architecture

this interface for semantic environments which must be supported. The reference im-
plementation of SISi contains an example implementation for Web Service Modeling
Execution Environment (WSMX).

Figure 5.27 illustrates the overall approach as a simplified EPC process model,
which can be applied not only to SISi but to all scenarios for semantically enriched
business processes. Steps that can be automated are marked in the figure with the
letters SYS.

It can be seen that different roles are involved. A business expert defines and
models the business process. This also includes semantic annotations of the process
model. Experts for semantic technologies like ontology engineers annotate existing
services so that they can be discovered through semantic service matching. The fi-
nal preparation and execution of the executable process is supported by integration
engineers.

5 Service Composition and Binding 137

Fig. 5.27. Approach for semantically enriched business processes

Step 1—Semantically Annotate Services

A core element of semantic provisioning is the semantic service description. This
book already presented different formalisms and approaches to capture semantic de-
scriptions of Web services (see Sect. 3.4).

The approach presented here works with any kind of semantic formalism, if a
reasoner exists which can compute the service match later on. Therefore, it is highly
recommended to use the ontology family the company is most familiar with. An-
other important question to solve is how to relate the semantic annotation to the Web
services they describe.

There are different possibilities, like the SAWSDL [66] (see Sect. 3.4.2). The
standard is independent of the semantic formalism used, because it only provides a
way to reference the semantic description. On a first glance it seems like a perfect fit,
but there are also some drawbacks connected to this solution. SAWSDL introduces
new elements and attributes to the WSDL standard and not all tools handling WSDL
files are aware of those extensions. This is no problem as long as the tools do not
touch or even change the unknown extensions. Before a company decides to use
the SAWSDL standard to reference semantic annotations, all tools in the tool chain
should be checked if they can deal with the extended WSDL files.

In case the tool chain is not able to support SAWSDL, another solution must be
found. In such a case it makes sense to decouple syntactic and semantic descriptions
by not mixing them in one file. A central service registry can be used to provide a
pointer to the syntactic as well as the semantic description of the Web service. Many
tools also allow using attributes to attach additional information to a Web service.

Semantic annotation of existing Web services can be done parallel to the other
activities. However, the semantic descriptions must be ready before the business
process is executed. Creating semantic descriptions is mainly led by ontology en-
gineers, who may consult business experts or service owners to correctly capture the
functionality.

Step 2—Model Business Process

As core assets of every company, business processes are constantly documented,
managed, and communicated. Before a business process can be implemented us-

138 M. Kowalkiewicz et al.

ing semantic Web services, it must be modelled first (see Sect. 5.6.1). Companies
already invested in the modelling and definition of business processes in the past,
even though the used languages and formalisms vary. If semantic business process
automation wants to be successful, it must reuse those existing descriptions. There-
fore, this step in the overall approach might be the task of getting access to existing
models, instead of creating new ones.

If semantic querying is intended, a transformation of the process models into
semantic formalisms is needed as well.

Business process modelling is led by business experts. However, the authors’
experience shows that support from modelling experts might be needed to define a
correct process model, which can later be transformed in an executable process. For
example, in case of the EPC notation, the usage of the OR operator must be avoided,
because it has no clear operational semantics [127] and it is hard to transform to an
executable language like BPEL.

Step 3—Annotate Business Process Semantically

In a world without semantics, services must be added directly to the process model.
Such a service selection during design-time can be also be supported by discovery al-
gorithms as shown in [182], but it does not allow a flexible service provisioning dur-
ing run-time. Therefore, instead of selecting a service directly in the process model
only a semantic description of the expected functionality is added. The actual ser-
vice selection and binding happens during execution of the process. This approach
slightly differs from the one presented in Chap. , since here the business process
is enriched with semantic information, instead of deriving it from the composition
description.

In order to annotate a business process model with semantics, the same problems
must be solved as for annotating Web services semantically. The first decision to be
taken is selecting the ontological formalism. In order to make the overall solution
not too complex, it is recommended to select the same ontological formalism also
used for semantic Web service description. Otherwise, transformations between the
different formalisms must be added to the solution stack, for example as ontology to
ontology mediators.

It must also be investigated if the tools already have functionality for seman-
tic business process modelling. Usually, modelling tools provide attributes for each
modelling element (like business functions, operators, etc.). Such attributes can be
used to either store the semantic description or a reference to an external file contain-
ing the semantic description.

If business process modelling was not done in the company, it might be a good
idea to directly start with a semantic modelling tool. However, this scenario is very
unlikely and there are only prototypical implementations of such semantic modelling
tools available. Therefore, using an existing modelling tool with a well understood
modelling language like EPC and BPMN is a much more realistic approach.

Semantic annotation should be led by business experts, because they know the
requirements they have for each business function. As semantic annotation requires

5 Service Composition and Binding 139

profound knowledge of the semantic formalism used, so ontology engineers will
have to support the business experts in correctly expressing the requirements they
have.

Step 4—Generate Executable Process

In the next step, the semantic business process model is transformed into an exe-
cutable one. Depending on the process middleware available in the company, dif-
ferent languages like BPEL or XPDL might be generated. As of today, no major
BPEL engine or middleware product understands semantic extensions. There is also
no common standard for embedding semantic annotations in BPEL beside some ini-
tial initiatives. Therefore, one should either find a way to execute a semantic process
model on an unmodified engine, or to extend an existing engine.

A pragmatic solution is the usage of the described SISi framework. For each ser-
vice call, which should result in dynamic service discovery and binding during run-
time, SISi is invoked with the semantic description as an input parameter. Invoking a
service requires an input and an output message. The message type of the discovered
Web service may vary. Therefore, it is impossible that SISi provides an operation
with the correct signature for each combination of possible input and output mes-
sage types. Instead, a generic interface must be provided, which can consume any
input message type and return any output message type. This can be done by dump-
ing the content of the input and output message in an own message part. The input
message type of SISi also contains another message part to transfer the semantic de-
scription. Again, as the used formalism might vary, no specialised interface can be
provided. Instead, the content of this message part is forwarded directly to the se-
mantic execution engine. To make this work, not only the BPEL invoke activities for
calling SISi must be generated, but also BPEL assign statements to define the input
and consume the output of SISi.

Even though the BPEL process with injected semantics is not trivial, it is possible
to automatically generate it. This might be surprising on a first glance, but manually
modelling such a BPEL process shows that certain modelling tasks are repeated all
the time. Therefore, this step is marked as an automated one in the SISi architecture
figure.

Listing 5.2 shows the syntactical description of the SISi’s Web service interface
defined using WSDL. There is exactly one operation to invoke a semantic Web ser-
vice. The message definitions of the operation’s parameters are shown in Listing 5.3
as XML Schema definitions.

Listing 5.2. Syntactical description of the SISi interface (WSDL)

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions name="WebServiceInterfaceWS"
targetNamespace="http://sisi.externalInterface/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://sisi.externalInterface/"
xmlns:dataNs="http://sisi.externalInterface/dataTypes"

140 M. Kowalkiewicz et al.

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema">
<import namespace="http://sisi.externalInterface/dataTypes"
schemaLocation="SISi_WebServiceInterface_dataTypes.xsd"/>

</schema>
</wsdl:types>
<wsdl:message name="invokeSemanticWebServiceRequest">
<wsdl:part name="semanticDescription" element="xsd:string"/>
<wsdl:part name="parameters" element="dataNs:hashMap"/>
</wsdl:message>
<wsdl:message name="invokeSemanticWebServiceResponse">
<wsdl:part name="parameters" element="dataNs:hashMap"/>
</wsdl:message>
<wsdl:portType name="WebServiceInterfaceWS">
<wsdl:operation name="invokeSemanticWebService">
<wsdl:input message="invokeSemanticWebServiceRequest"/>
<wsdl:output message="invokeSemanticWebServiceResponse"/>
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

Listing 5.3. SISi datatypes (WSDL)

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://sisi.externalInterface/dataTypes">
<xsd:complexType name="hashMap">
<xsd:complexContent>
<xsd:extension base="map">
<xsd:sequence/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="map">
<xsd:sequence>
<xsd:element name="mapEntry" type="mapEntry" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="mapEntry">
<xsd:sequence>
<xsd:element name="key" type="xsd:anyType"/>
<xsd:element name="value" type="xsd:anyType"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

5 Service Composition and Binding 141

Step 5—Finalise Executable Process

If everything goes fine, a generated BPEL process can be deployed and executed di-
rectly. According to the authors’ experience, this is usually not the case. For example,
each execution environments has some specifics requiring a manual adaptation of the
generated BPEL process. Also, some information is not available in the platform in-
dependent model and can therefore also not be generated or transformed. A typical
example is technical exception handling. Business experts can only define business
exceptions like a customer cancelling an order during the order process, but it is not
their task to define technical exception handling like if a Web service is not available
or messages are corrupted. Adding such information to business oriented process
models makes those models unreadable and lowers them to a platform specific level.
This step is usually led by integration experts of the used execution environment.

Step 6—Deploy Semantic Executable Process

Deploying an executable process on a process execution engine is usually straight-
forward, if clustering, security aspects and other non-functional properties must not
be taken into account. In case of semantic business process execution, the following
tasks must be done in addition:

• Besides setting up the execution engine, the semantic execution engine or rea-
soner must be made productive as well.

• The semantic descriptions of all Web services must be made available to the
semantic execution engine so that arriving queries can be computed against the
semantic descriptions of available services.

• The semantic execution engine must be made accessible by the BPEL execution
engine.

If those additional steps were done, the generated BPEL process can be deployed
on the BPEL engine. This step is led by integration engineers, who are familiar with
the different systems. This step is marked as an automatic one, because most tasks
can be automated after enough experience was gathered.

Step 7—Bind Services During Runtime

In the final step, the BPEL process is executed. The BPEL orchestration engine nav-
igates through the process model and executes each activity. Each time a seman-
tic Web service should be discovered during run-time, SISi is invoked. Figure 5.28
shows the different steps performed to discover and invoke a semantic Web service
using SISi. The steps are:

1. The BPEL process is executed on a standard orchestration engine like Oracle
BPEL Server or IBM Websphere. In case a semantic Web service should be
bound during run-time, the request is forwarded to SISi. SISi is executed on a
JAVA servlet container.

142 M. Kowalkiewicz et al.

Fig. 5.28. System architecture for the SISi example

2. SISi receives the semantic discovery request and passes the semantic goal de-
scription (see Sect. 3.4.1) to a reasoner.

3. The reasoner uses semantic discovery algorithms to find matching semantic Web
service descriptions (see Sect. 3.5). The best fitting Web service description is
selected and passed back to SISi.

4. SISi uses this information to invoke the semantically discovered Web service
with the data received from the BPEL process as input parameter.

5. The Web service is executed and the output data returned to SISi.
6. SISi forwards the output data back to the BPEL process.

Those steps are repeated for each semantic Web service to be bound during run-
time of the executed BPEL process.

5.6.4 Chances of Semantic Business Process Management

Business process management as a sub-discipline of enterprise architecture deals
with managing and defining a core asset of the enterprise model—the business proces-
ses. Business processes define the interaction between the different elements of the
company. Today, there is a gap between the view of business and IT experts on the
business processes, which is caused by no shared conceptualisation between both
groups. This fact prevents any easy solution for deriving an IT implementation out
of the business processes, which is a major goal of business process automation. To

5 Service Composition and Binding 143

overcome this problem, the usage of ontologies resulting in clear semantic descrip-
tions is suggested. Activities in a business process as well as Web services to auto-
mate them are semantically described and semantic matchmaking is used to bring
them together. The presented approach is very pragmatic, because it reuses existing
technologies and standards where possible instead of introducing a completely new
technology stack. This general approach of re-using existing services and standards
reflects the unavoidable consideration of legacy technology and existing functional-
ities in all service enabling scenarios.

After the discussion of service enabling in this and the presentation of proper
means for semantic service description in the previous chapter, the next chapter will
present details about service composition and binding.

6

Service Composition Enactment

Marek Kowalkiewicz, Mariusz Momotko, and Alexander Saar

6.1 Overview and Motivation

Enactment of manually or automatically created service compositions as the crucial
part of a service oriented approach is not novel; there are several standard execution
languages and there are many existing composition enactment engines.

The de-facto standard for service composition and business process description is
the Business Process Execution Language (BPEL) [11, 26]. In BPEL, a service com-
position is defined as a business process in terms of control flow (i.e. order of the
invoked atomic services) and data flow (input and output parameters and mappings
between them). On the market, there are quite many BPEL execution engines avail-
able both as open source engines (e.g. ActiveBPEL, FiveSight PXE) as well as com-
mercial engines (e.g. IBM WebSphere Process Server, OfficeObjects R©WorkFlow,
and Oracle R©BPEL).

Also for service monitoring there are (at least) several well defined approaches
based on service level agreements, like the Web Service Level Agreement (WSLA)
project from IBM or WS-Agreement from the Open Grid Forum (OGF) standardis-
ation body.

Most of the existing tools do quite well with adaptability at the atomic service
level. For instance, they are able to replace dynamically the invoked service with
another one of the same functional specification. However, their support for adapt-
ability at the service composition level is weak. To cope with this problem several
intensive research works have been carried out recently. The eFlow project from HP
Labs [40] proposes an adaptive and dynamic approach to manage service composi-
tions focusing on their functional aspects such as dynamic service discovery and ad
hoc changes. The QUEST framework [79] extends the work done on eFlow by intro-
ducing the notion of Quality of Service (QoS) provisioning. The MAIS project [48]
focused on negotiation of Web service QoS parameters with the ability to use differ-
ent negotiation strategies. Also in the area of SLA-based contracting and monitoring,
there are several advanced approaches and frameworks [18].

146 M. Kowalkiewicz et al.

Despite all this efforts, still an open and valid question is how to manage service
compositions in order to satisfy both functional and non-functional requirements
properly as well as adapt to dynamic changes. So far, adaptability in the existing
approaches and tools is weak or inadequate. They do not work well in case of dy-
namic changes related to the contracted atomic services. In case of failures they have
problems with finding alternative solutions that would satisfy both functional and
non-functional requirements. In particular, they are not able to re-negotiate a con-
tract in case of QoS constraint violation, and re-select dynamically another atomic
service that satisfies QoS constraints. In addition, the existing approaches do not pay
much attention on service profiling and historical execution data and therefore they
are not able to optimise their way of working.

The following chapter describes some recent results in adaptive service composi-
tion management and enactment. The presented concepts may be considered as one
possible strategy towards a comprehensive approach for adaptive management of
QoS aware service compositions. It integrates well known concepts and techniques
for contracting, enacting and SLA management, monitoring, and profiling. In gen-
eral, the presented approach proposes various execution strategies based on dynamic
selection and negotiation. The consecutive sections are focused on the elements of
these strategies: composition enactment, composition monitoring, and composition
profiling.

6.2 Enactment Strategies

Composition enactment and monitoring are two tasks of adaptive service composi-
tion management. The other three tasks, namely selection, contracting and rebind-
ing (or exception handling) have already been discussed in Sect. 5.4. The different
ways of combining these five basic tasks may be used to define various execution
strategies, which are independent from the according composition description and
enactment technology. As usual, there is no optimal strategy. Every strategy focuses
on different aspects of service executions and has both advantages and disadvantages
(see also [212]). These strategies may be treated as a next step toward adaptive com-
position management. They therefore complement the already described adaptability
approaches:

6.2.1 First-contract-all-then-enact Strategy

This strategy assumes (see Fig. 6.1) that selection and contracting of all atomic ser-
vices included in the service composition is done before its execution. Execution and
monitoring of the individual atomic services is done step by step according to the
control flow defined for the service composition. Any failure reported during service
execution is handled by exception handling mechanism described in the previous
sections.

This strategy makes it possible to guarantee non-functional requirements for the
whole service composition (global level). Since contracting is done before execution,

6 Service Composition Enactment 147

Fig. 6.1. First-contract-then-enact strategy

Fig. 6.2. Step-by-step-contract-and-enact strategy

concurrent selection and negotiation is allowed. As a result, it is possible to consider
aggregated concession sets and preferences (e.g., if the same provider provide ser-
vices for several atomic services, then some discount may be regarded), so that the
service composition QoS parameters can be optimised.

On the contrary, in this strategy all the activities on conditional branches need to
be selected and contracted although some of them may never be enacted. This calls
for some kind of reservation mechanism. Also service implementations registered
during service execution cannot be selected. Finally, the strategy requires coordi-
nated negotiation mechanisms with a coordination agent and a set of negotiation
agents (e.g. concurrent or market mechanisms).

6.2.2 Step-by-step-contract-and-enact Strategy

This strategy assumes (see Fig. 6.2) that selection, contracting, and atomic service
execution is intertwined. That is, the first atomic service in the service composition
can be executed and monitored when its SLA document is established. After com-
pletion of this atomic service, the selection and contracting is carried out for each
subsequent atomic service and followed by its execution. Any failure occurred dur-
ing service execution is handled by exception handling mechanism.

This strategy allows for on-the-fly selection and negotiation based on results and
actual QoS values of services that have been executed. This will lead to more ac-
curate and efficient negotiation since it is based on what has already been executed.

148 M. Kowalkiewicz et al.

Only the invoked atomic services are contracted, not executed branches of service
composition are not considered. Also it is possible to select atomic services that
have been registered after starting execution of the service composition.

On the contrary, the strategy can only optimise QoS for a given atomic service
(local level). As a result, the global QoS requirements can not be optimised. Local
constraints need to be considered, but if a framework gets a list of providers satisfy-
ing local constraints then there is still a risk of missing their combinations. Instan-
tiation and execution of the whole service composition can not be guaranteed. One
example would be an service implementation that is executed, but which hinders
other service implementations from being selected or contracted. In this case, the
whole service composition would fail, and waste the resources of already executed
services, or may even demand costly roll-back activities.

6.2.3 Late-contracting-then-enact Strategy

This strategy assumes that the selection and contracting of atomic services is done
before their execution, as soon as it is sure that they will be executed within a given
composition. If, for example, there are two alternative branches, as soon it is known
which of them will be taken, all atomic services on the satisfied branch are selected
and contracted. Execution of the atomic services is carried out according to the con-
trol flow definition. This strategy is similar to the first negotiation then enact strategy
but minimises the risk in contracting services which will never be executed. The risk
to not satisfy the global QoS requirements is less than for the mentioned strategy but
still exists.

6.2.4 First-contract-plausible-then-enact Strategy

This strategy tries to select and contract first (before service composition execution)
all atomic services that belong to one of composition path which is the most likely
to be executed. The path is predicted on the basis of historical data from previous
execution of the service composition. The services belonging to other paths are not
selected and contracted. Execution of the atomic services is carried out according to
the control flow definition. This strategy minimises the risk of (a) contracting services
that will never be executed, (b) satisfying the global QoS requirements. However, it
will work properly only for those cases which execution concern the most probable
path in the composition. For the other paths it will have similar problems as the step
by step contract and enact strategy.

6.2.5 First-contract-critical-then-enact Strategy

This strategy selects and contracts before execution only those atomic services which
are hard to be contracted dynamically. ‘Hard’ in this context means that the number
of service candidates for those service specifications is significantly less than the
number of candidates for the other services included. This strategy is similar to the

6 Service Composition Enactment 149

Table 6.1. Several simple rules for selection of the execution strategy

If service composition includes then apply strategy

neither conditional nor alternative branches first-contract-all-then-enact
a small number of
conditional/alternative branches

late-contracting-then-enact

one path with high probability of execution first-contract-plausible-then-enact
easily contracted atomic services step-by-step-contract-and-enact
large number of hard-to-contract services first-contract-critical-then-enact

step by step contract and enact strategy but reduces the risk of not satisfying the
global QoS requirements. On the other hand, it also does not cope with branches
which will never be executed.

Table 6.1 gives a possible set of rules for choosing the right execution strategy
with a given service composition.

6.3 Composition Monitoring and Profiling

With a strategy for composition enactment and service contracting, the according
framework still needs to supervise the ongoing enactment. This monitoring and pro-
filing enables the reaction on service faults or performance gains, or might be simply
needed because of legal regularities. We distinguish between two major issues: ser-
vice monitoring is the activity of collecting performance and operational data for a
service under use. service profiling describes the activity of using this data for the
derivation of a condensed description reagarding the non-functional properties of a
service. This service profile enables the qualitative comparison of service candidates,
which is a prerequisite for dynamic service binding.

6.3.1 Service Monitoring

Service monitoring plays an important role for the negotiation and profiling of non-
functional QoS characteristics, since it provides the source data for them. For this
reason, it is important to investigate monitoring strategies that can be applied in het-
erogeneous environments.

QoS attributes and their usage for Service Level Agreement (SLA) documents ap-
pears in different application domains, like networking hardware, telecommunication
environments, finance management, agent systems, or service oriented architecture
(SOA). The according researchers and engineers typically refer to different data mod-
els for their quality attributes, since the nature of service quality depends on the par-
ticular domain. It is therefore not possible to talk about an ultimate set of monitoring
attributes, which can be applied across all application domains and business areas.
This tends to be a problem in generic service monitoring and profiling frameworks,
which may be intended to work independently from the application domain.

150 M. Kowalkiewicz et al.

Fig. 6.3. Classification of monitoring values

Even with the positioning in one particular domain, heterogeneous technologies
can still prevent a consistent gauging and retrieval of monitoring values by the service
provisioning platform. Therefore, the generic monitoring of services must rely on an
abstract and domain-independent approach.

One possible generic classification of monitoring attributes is shown in Fig. 6.3.
The vertical dimension differs between quality-of-result and quality-of-operation,
while the horizontal dimension covers resource-level and implementation-level val-
ues. In addition to the two dimensions mentioned before, we can differ between
calculated and directly measurable (atomic) values.

The quality-of-result parameters provide a quantitative representation for non-
functional requirements on operation results. An example could be a service that
returns a map which contains a route description. The service can provide a coloured
and high resolution map, or a monochrome and low resolution one. These values are
specified by the particular service implementation and define the quality of the result.
They are therefore specific for the particular implementation.

quality-of-operation parameters express non-functional requirements on result
delivery. Typical examples are the request throughput of a service or the response
time of service invocations. These parameters are similar for all service types and
application domains.

The horizontal dimension considers the difference between values that can be
provided by the environment, and values that must be provided by the service itself.
The monitoring of resource-level parameters depends on the resources that execute
the service, for example an application server in the service infrastructure. Examples
are resource utilisation values, such as the CPU load or memory consumption of a
running service implementation.

In contrast to resource-level values monitoring of implementation-level parame-
ters relies on specific service implementation characteristics, for example the cost of
a service invocation. The actual values can therefore only be obtained by the help of
the service implementation itself.

6 Service Composition Enactment 151

In general, a SLA can be related to any kind of QoS value. Many standards
for SLA definition, like WSLA [63] or WS-Agreement [12] provide the ability for
defining own parameter types. Thus, providers and consumers of services can define
various QoS values, depending on their business area and technologies used. Never-
theless, there are some widely accepted QoS values, that are ubiquitous and common
to all kinds of services. In majority of the cases, these values are related to quality-of-
operation, because this is the only common class of properties that all services share.
Resource, implementation, and quality-of-result related values are mostly domain,
or service technology specific and thus they can not be generalised. The following
list provides a set of commonly accepted QoS values, taken from the Service Level
Measurement Quality section of the Quality Model for Web Services [106]:

response time: Measures the time to send a request and receive the response. It is
usually calculated using a mean value during a certain time.

maximum throughput: Measures the number of requests that a system can process
over a certain period of time (1 unit). It is often used as a performance index,
evaluating the system.

availability: Measures the ratio of time, when a Web service is ready for use or being
used (uptime, as opposed to downtime). For instance, if a Web service is ready
for use or being used for 54 minutes per hour, then Availability = 54/60 =
90%.

successability: Measures the ratio of successfully returned messages after requested
tasks are performed with no errors. In contrast to accessibility, that measure can
be used to indicate how effective the service is.

accessibility: Measures the ratio of acknowledgement messages in relation to the
number of request messages. In some cases services may be available, but they
not operate properly. That situation is not captured by accessibility, however it
is reflected in successability, that by definition can never be greater than a acces-
sibility.

These and other parameters are typically relevant for the permanent supervi-
sion of service execution. Typically, the responsible service infrastructure controls
the uniform invocation of services and monitoring of resource-level and quality-of-
operation parameters. It decouples higher layers of the platform from heterogeneous
execution environments, operating systems, application servers, and resource bind-
ing mechanisms. In most cases, this layer is part of the service infrastructure (see
Chap. 7), which provides the according runtime environment for self-contained or
wrapper services.

A general understanding of a service invocation in the service infrastructure is
illustrated in Fig. 6.4. Every invocation—including request and response—of a ser-
vice passes a set of mediators. These mediators have various responsibilities from
packaging and (de)serialisation on client and server side, up to message transforma-
tion and routing at intermediaries. The realisation of the mediators depends on the
particular environment and configuration.

The model shown in Fig. 6.4 can be used for definition of measurement points,
marked with “MP”. For example, if provider and consumer of a service define a

152 M. Kowalkiewicz et al.

Fig. 6.4. Common service invocation model [193]

maximum end-to-end response time, the model can help in understanding the value
generation and therefore the semantic of the according measurement results. It is
possible to define that the request time gauging is the first operation in the first client
side mediator (MP1 in Fig. 6.4), and that the corresponding measurement of request
completion time is the last operation in the last mediator of the response mediator
chain (MP3 in Fig. 6.4). The resulting response time is now semantically clearly
described, without any technological relation:

Response Time = Completion Time (MP 2) − Start Time (MP 1). (6.1)

One of the interesting aspects in the example is that the end-to-end response time
refers not only to the time for processing a service invocation (request and response),
but also includes the efforts of marshalling, routing and un-marshalling. The mea-
sured time therefore nearly reflects the end-user perception, which is a crucial issue
for real-world SLA monitoring. Resource metrics are typically obtained at MP3,
since the measurement technology such as an operating system API is only available
on the service execution host.

The definitions of implementation-level and quality-of-operation parameters are
bound to the particular kind of service. These types of QoS values are part of service
responsibilities and thus they must be provided by the service implementation. The
service infrastructure therefore does not need to handle this class of monitoring pa-
rameters, but must offer some mechanisms for supporting the storage, accumulation,
and consistent provisioning of such values.

6 Service Composition Enactment 153

6.3.2 Service Profiling

Based on the monitoring of single services, a composition enactment framework
must maintain profiles of integrated services. A service profile is defined as an up-
to-date description of a service. It allows the service comparison based on non-
functional parameters. Most common service descriptions in Web Services Descrip-
tion Language (WSDL) do not provide necessary information to create a service
quality profile. A service provider may include only a few of non-functional pa-
rameters in the semantic service description, like missing QoS values. That is why
the other important parameters have to be determined by other means. The descrip-
tion provided by service providers is also rather static, whereas the values of some
service characteristics change in time and depend strongly on changes in the en-
vironment (problems with network, throughput, etc.). Service properties specified
by service providers also change occasionally, for example when new resources be-
come available etc. For frequently changing values, service providers are able to
provide value ranges, exact values of which are established during a negotiation
process.

The main task of service profiling is to create and update service profiles of indi-
vidual and composed services used within a semantic service provisioning platform.
Data gathered in service profiling repositories during execution of services serves as
a source of up-to-date information used by other components, such as the negotia-
tion process or the re-planning components (see also example in Sect. 9.1.2). The
latter may need the data to perform analysis and to select an appropriate part of the
composition for re-planning. Service profiles for individual, as well as for composed
services, are created while analysing available data (historical and current). They
represent up-to-date characteristics of services. When creating a service profile, the
horizon of the prognosis needs to be taken into account. For example, a SLA nego-
tiation can request service profiles that forecast either their short time or long time
behaviour (parameters). A high-level overview of actors involved in service profiling
is provided in Fig. 6.5.

Additionally, service profilers can suggest tuning possibilities (for example re-
placing non-optimal services) that help to improve quality and performance of al-
ready designed service compositions. Moreover, in more advanced environments,
service profilers have the chance to trigger early warnings in case of detected high
probability for a service failure.

It is important to notice that service profiling is not directly responsible for cur-
rent monitoring of actual values of composition enactment. The main goal of service
profiling is to collect information from composed services executions, aggregate it
and derive new information about services. The information is then provided to in-
terested parties in order to influence planning, negotiation, and enactment. Table 6.2
shows a sample list of profiling parameters considered in many typical use cases
involving Web services.

Service profiling is invisible to end service requesters and independent from their
usage scenario. The service profiling is most useful if there are many service substi-
tutes available that offer the same functionality with different service levels.

154 M. Kowalkiewicz et al.

Fig. 6.5. Service profiling actors

Table 6.2. Sample list of profiling parameters

Parameter name Value type

Response time (Avg/Min/Max) Time (ms)
Duration of execution (Avg/Min/Max) Time (ms)
Price (Avg/Min/Max) Cost (MU)
Reliability Percentage
Accessibility Percentage
Charging method and payment method String
Response latency or execution duration Percentage
Provider reliability or provider accessibility Percentage

For the clarification of basic properties, we consider an example of an end service
consumer who wants to register a new domain (see use case scenario in Chap. 9.1.2).
Hence, the scope of the scenario is to check whether the desired domain name is
available, to create the desired Web hosting account, and finally to allow payment
for all services through electronic channels. Services in this scenario are divided into
three groups:

1. Domain services,
2. Web hosting services,
3. Payment services.

In the category of domain services, we distinguish between services checking
the domain name, services that register domains, and services updating nameservers.
Exemplary services for Web hosting services are Web hosting accounts creators,

6 Service Composition Enactment 155

domain creators, or e-mail configurators. Payment services handle all aspects of set-
tlement of each transaction, like credit card authorisation, payment, refunds, or cur-
rency conversion.

A starting point for the scenario can be the following user request: “Register
domain lehmann.de for the customer Max Lehmann and provide him with 100 MB
of webspace”. Moreover, the customer needs a domain to be registered in less than
1 minute, in order to keep a reasonable response time on the front-end Web page. It
should also be ensured that the participating service has a high level of accessability.

In a semantic service provisioning platform, the negotiation subsystem is used to
select the most suitable atomic service implementation to be contracted by negotia-
tion for each atomic service specification. In the sample scenario these atomic service
specifications are the CheckDomain, CreateWebhostingAccount, CreateDomain, Se-
tupPhysicalHosting, UpdateNameserver, RegisterDomain, and CreditCardPayment
services. The negotiation subsystem needs to decompose the overall non-functional
requirements and assign them to each atomic service. In order to do that, it needs to
know what are the values of e.g. mean execution duration of each of the atomic ser-
vices. Moreover, for some specifications there is more than one atomic service that
implements the service specification, e.g. implementation of CheckDomain service
is offered by three different service providers.

In order to perform a choice of services, the values from service profiles and
service ranking are required. In the profile, we compute and provide several non-
functional properties. However, for simplicity, only three of them will be used in
further description. These characteristics are: price, execution duration, and acces-
sibility. The accessibility parameter is used by the negotiation subsystem for partner
selection to filter the list of potential providers. For each relevant atomic service (in-
cluding substitutes) the negotiation subsystem asks the service profiling subsystem
for a matching profile. One example for such a query is shown in Listing 6.1.

It contains the following data:

Parameter defines which parameters will be put into the output data structure, the
profile or the ranking of profiles.

ServiceIDList is a list of service implementation identifiers, for which parameters
should be computed.

Listing 6.1. A sample service profiling query

query1 = new DspQuery(

’Profile’,

’2’,

’Accessibility > 0.48’,

’ChargingMethod=per execution’,

’3’,

’Synthetic,Price’,

’1’);

getServiceProfile (query1);

156 M. Kowalkiewicz et al.

HavingQuan is a list of conditions constraining quantitative parameters, i.e. Respon-
seLatency, MaxResponseLatency, MinResponseLatency, ExecutionDuration,
MaxExecutionDuration, MinExecutionDuration, Price, MaxPrice, MinPrice, Re-
liability or Accessibility. Services that do not meet all of the conditions will not
be included in the output.

HavingQual serves the same purpose as HavingQuan but is used for constraining
qualitative parameters. i.e. PaymentMethod or ChargingMethod. Each condition
consists of two parts, the qualitative parameter name and the string value.

Horizon restricts the time scope for analysing service instances. Only three values
are allowed for the parameter, representing data not older than one month, data
not older than half a year, or data not older than one year.

OrderBy is a list of quantitative parameters. If it is not empty, the output will be
sorted in the order of ascending values of given parameters. If it is empty, Syn-
thetic parameter is taken as a default ordering indicator.

Limit is an integer that defines the upper limit on the number of service profiles in
the output. Set to 1, and used together with OrderBy may be employed to select
the best service accordingly to a selected parameter set. If Limit is set to zero or
not given, all the profiles will appear in the output.

In order to answer the presented query for services, the profiling subsystem uses
specific profiling algorithms, as well as data from the service profiling repository.
The service profiling repository is replenished continuously with information about
the service executions in the form of the log files. The relevant information about
service behaviour is derived from the log file and SLA contracts and stored in the
repository in question. The result of the sample query from Listing 6.1 is shown in
Listing 6.2.

The service profiling subsystem creates service profiles for each implementa-
tion of atomic service specification (e.g. for each implementation of CreateDomain
service specification), and orders them according to the synthetic indicator value,
which is an aggregated value derived from the available quality factors. The returned
profile information can be expressed as XML document, as shown in he example
Listing 6.2.

Similarly, profiles for all other services involved in a process can be created.
They are sent back to the negotiation subsystem, and on the basis of these values, the
negotiation subsystem chooses appropriate atomic services. Additionally, the service
profiling subsystem offers the negotiation subsystem computed profiles about service
providers. They are especially useful when existing services outside of the platform
are considered in the negotiation process. The provider profile gives information on
its reliability, accessibility etc. This information is then used to choose one service
from the set of services having the same characteristics.

As another aspect a service profiling subsystem is the acquisition of data nec-
essary to compute service and provider profiles. This data is used in order to cre-
ate profiles of each of the atomic services involved in the process as described. By
analysing changes in the repository, service profiling subsystems can suggest tuning
possibilities and/or the re-negotiation of service composition.

6 Service Composition Enactment 157

Listing 6.2. A sample answer to a service profiling query

<?xml version="1.0" encoding="UTF-8" ?>

<ProfileData>

<ServiceProfile>

<BasicData>

<WS-ID>2</WS-ID>

<WS-Price>2.5</WS-Price>

<WS-MinPrice>2.0</WS-MinPrice>

<WS-MaxPrice>3.0</WS-MaxPrice>

<WS-ExecutionDuration>21.5</WS-ExecutionDuration>

<WS-ExecutionDurFulfilment>75.0</WSExecutionDurFulfilment>

<WS-MinExecutionDuration>15</WS-MinExecutionDuration>

<WS-MaxExecutionDuration>28</WS-MaxExecutionDuration>

<WS-Synthetic>1.0</WS-Synthetic>

<WS-SlaFulfilmentIndicator>0.88</WSSlaFulfilmentIndicator>

</BasicData>

<AdditionalData>

<WS-PaymentMethod>credit card</WS-PaymentMethod>

<WS-ChargingMethod>per execution</WS-ChargingMethod>

<WS-Accessibility>1</WS-Accessibility>

<WS-Reliability>1</WS-Reliability>

<WS-ResponseLatency>1.5</WS-ResponseLatency>

<WS-ResponseLatencyFulfilment>100</WSResponseLatencyFulfilment>

<WS-MinResponseLatency>1</WS-MinResponseLatency>

<WS-MaxResponseLatency>2</WS-MaxResponseLatency>

</AdditionalData>

</ServiceProfile>

</ProfileData>

A detailed architecture for service profiling is available in other studies [3], and
the challenges of QoS computation [4], and problems with assessing reliability of
Web services have also been discussed in other works [2]. The relation of service
profiling to other components of service delivery platforms has also been discussed
in related work [133, 134]. Future experiments and research results will determine
the relevant functionality for a service profiling environment.

6.4 Fault Management Strategies

Beside the performance aspect of service monitoring and profiling in composition
enactment, the detection and reaction to fault conditions plays also a major role. In
order to assure an appropriate level of adaptability, the composition enactment unit
should provide sophisticated strategies for fault management. These strategies start
from re-binding of concrete atomic service and end with re-planning of the whole
service composition. If an invoked atomic service fails, the fault management strate-
gies can be categorised as described in the service delivery life cycle (see Sect. 2.3):

158 M. Kowalkiewicz et al.

re-binding either stands for a SLA re-negotiation with the provider of an atomic
service, or for the replacement of a service by re-selection.

re-planning denotes the creation of the whole service composition. The service com-
position enactment is continued with its new definition.

In the context of re-binding, re-negotiation results in updating the SLA docu-
ment. Re-selection usually happens if either re-negotiation was not possible or the
source of the failure was related to a functional problem. In this case the respon-
sible component of a service provisioning infrastructure should try to find another
atomic service providers that match the service specification and new requirements.
Since this re-planning is the most advanced mechanism, it will be discussed in the
consecutive sections in detail.

6.4.1 Re-planning of a Service Composition

In order to re-plan a service composition, the authors propose a multi-step proce-
dure that includes the termination of failed activities, the sound suspension of the
workflow, the generation of a new process definition, and the adequate process re-
sumption.

Considering related work there are some approaches for automated re-planning,
but none of them explicitly take workflow suspension and resumption into account.
In [117] requests are matched against standard business processes to generate an ex-
ecution plan. Every time a knowledge gathering action is executed the additional in-
formation is used to generate a new plan. Ontologies of domain services and domain
integration knowledge can be used as a model for workflow integration rules [15].
DYflow [214] avoids predefined process definitions and allows the dynamic compo-
sition of Web services to business processes by applying backward-chain, forward-
chain and data flow inference.

One of the main preconditions for process re-planning is the assumption that the
state of the process instance and all its activity instances does not change during
re-planning. This assumption may be satisfied if re-planning is proceeded by sus-
pending a given process instance and followed by resuming it. These two functions
operate on process instance and activity instance entities and need to be represented
in their behavioural model.

The usual way of doing it is to define a new “suspended” state together with two
events: “suspend” which goes to and “resume” which goes from the defined state
[90, 1]. An implied assumption of this approach is that suspension is done only for
entities remaining in state “running”. This assumption, however, seems to be too
restrictive in case of re-planning since re-planning may occur to an activity instance
remaining in any of its state (e.g. “scheduled”).

To cope with the above problem it is possible to introduce two new states, which
enable or disable the workflow management system to process the mentioned enti-
ties. These states are called enabling states and are orthogonal to the remaining states
which are called operational states. Regardless of the operational state in which a
given entity remains, at any time it is possible to suspend or to resume a process or

6 Service Composition Enactment 159

activity instance. If the suspend event occurs, the entity moves to state “disabled”. In
this state the functions operating on the entity may behave in a different way. Basi-
cally, the functions responsible for assignment or execution of the entities omit dis-
abled entities. For example, activity instances (or tasks) remaining in states “sched-
uled + disabled” will not be displayed in the participants work lists. On the contrary,
the functions responsible for completing or terminating entities will behave in a sim-
ilar way as those for enabled activities do. Suspension of a process instance causes
suspension of all its activity instances. In this case, the suspend event is also sent to
all activity instances of a given process instance.

If the resume event occurs, a suspended entity moves back to state “enabled”.
This also triggers appropriate operation related to the entity operational state. For
example, for activity instance remaining in state “running”, this entity is re-run. Re-
suming of a process instance causes resuming of all its activity instances. In this case,
the resume event is also sent to all activity instances of a given process instance. In
addition, in the proposed approach the state “suspended” is not needed any more.
Now, it is expressed as a combination of “running + disabled” states.

The process instance behavioural model presented in Fig. 6.6 consists of two
group of states: operational and enabling ones. The state “new” is the operational
state in which a process instance is created. If all its preconditions are satisfied, it
starts its first activity and moves to state “running”. Then it remains in this state until
all its activity instances are finished and all its postconditions (if present) are satisfied.
Afterwards it moves to the state “completed”. At any time it is possible to terminate

Fig. 6.6. Process instance behavioural model

160 M. Kowalkiewicz et al.

Fig. 6.7. Activity instance behavioural model

the process instance. In this case, all its running activities are also being terminated.
In addition, at any time it is also possible to suspend or resume the process instance.

The activity instance behavioural model presented in Fig. 6.7 is an extension
of the model proposed in [90]. Firstly, we add enabling states introduced earlier
and, in addition, support it with starting conditions. When an activity instance is
created its enabling state is the same as for the corresponding process instance. This
feature is needed if we use the suspension technique based on completion of running
activities. Secondly, an activity instance moves to the state “scheduled” only if all
its preconditions are satisfied. Similar situation is with postconditions and the state
“completed” which is triggered by the completion event.

Re-planning Procedure

Re-planning of a workflow process is a quite complex operation and consists of sev-
eral steps:

Termination of the Failed Activity Instances

In the first step all the failed activity instances are terminated (i.e. they move to op-
erational state “terminated”). Usually there is only one such activity instance which
caused re-planning. However, it is also possible that during replanning some other
activities that are still running (a suspending technique—see next section) will also
fail. In that case re-planning must be terminated and then started once more with

6 Service Composition Enactment 161

information about all failed activity instances (i.e. that which had failed before the
first re-planning as well as those which have failed after the first re-planning started).

Process Instance Suspending

In the next step the process instance and all its activity instances are suspended.
This results in changing the enabling state of these entities to the state “disabled”.
This operation is to assure that the mentioned entities will not change their state
until re-planning is completed. Since an atomic activity may be executed as an ap-
plication, for every instantiation of such activity it is also required to send a request
for suspension to the corresponding application. If the application implements the
suspend-operation then such request will be handled correctly. Otherwise, it is not
possible to suspend properly the application and thus the activity instance. There are
two possible techniques to cope with this situation: we may either leave the running
application (activity instance) to complete its execution or terminate the running ap-
plication (activity instance). The former technique allows the running applications
to complete. If they complete before finishing the re-planning, they will move to
state “completed”. Then the workflow management system will evaluate the outgo-
ing transitions and create new activity instances being the successors of the com-
pleted activity instances. Since the process instance remains in state “disabled”, also
the new activity instance will remain in this state and thus they will not be processed
until the state changes to “enabled” (when the process instance is resumed). If the
running application completes after finishing re-planning, the process will behave in
the normal way. This is because resuming operation will change the enabling state
of all activity instances to “enabled”.

The former technique allows us not to waste the results of activity instances
which have not failed but can not be suspended for re-planning. This is especially
useful in case when the mentioned activities are still present in the new process de-
finition and thus will have to be executed once again. Also using this technique we
do not increase the constraints on the non-functional requirements such as response
time or cost. On the contrary, if, during re-planning, such running application fails, it
triggers a request for a new re-planning. In that case, we will have to prolong the re-
planning operation (which may increase the time constraints on the process instance
execution) and to ignore all the re-planning effort achieved so far (the input data for
replanning has changed). The latter technique terminates immediately all running
activity instances. This technique may avoid re-planning reiteration as it was pointed
out for the former technique. However, using this technique it is possible to waste
the results that may be retrieved and to re-execute the same application. In addition,
some application may not support termination.

Generation of a New Process Definition

After suspending the process instance a new process definition is generated based
on the current state of the case. This automated process generation works analo-
gous to the initial generation of a process definition. The main difference is that in-
stead of the initial state the current state is used as input. The current state is derived

162 M. Kowalkiewicz et al.

by starting with the initial state and retracing all effects of all currently executed
or terminated activities. In this way, the current state reflects all previously unex-
pected effects of failing activities. Thus, these failures are automatically taken into
account when using the current state to generate the new process definition. As a
result, the new process definition describes a way of how to compensate the failed
activity.

Process Instance Re-planning

Afterwards the old and newly generated process definitions are merged and, accord-
ing to that merged definition, the process instance is prepared for resuming and fur-
ther execution (continuation). In order to merge the old and new process definitions
the activities present in both definitions must have the same identifiers (not changed
during generation of the new definition). At the activity level re-planning is carried
out in the following way:

• For activities present in both old and new process definitions no action is taken.
• For activities present only in the old process definition, in case the operational

state was “completed” or “terminated”, no action is taken. Otherwise they need
to be terminated.

• For activities present only in the new process definition, a new activity instance
needs to be created. In addition, for intermediate activities (one or more ingoing
and outgoing transitions) all ingoing transitions required for the activities must
be instantiated.

Process Instance Resuming

The final step for re-planning is to resume the re-planned process instance and con-
tinue it with the new, merged process definition. To resume the process instance at
least one of its activity instances has to remain in a not finished state (i.e. new, sched-
uled or running). This precondition assures that after resuming the process instance
will be executed. The resuming event causes that the enabling state of the process
instance and all its activity instances is changed to Enabled. In addition, this event
also triggers re-running of the activity instances remaining in state running.

The enactment of static service compositions is covered by a huge market of
workflow engine products, according standards and competing technological trends.
This chapter focussed on the identification and discussion of crucial enactment is-
sues in the context of dynamic service provisioning environments. This included
questions of composition monitoring, service profiling, and fault management strate-
gies.

While the technologies and approaches for service composition enactment can
be seen as mature, more advanced topics in the context of semantic services are still
an issue. The chapter presented some possible strategies in relation to the book’s use
case scenario. Due to the ongoing research activities in this field, new results can be
expected in the future. The next chapter will go down into technology and present
current developments regarding infrastructures for service provision.

7

Service Infrastructure

Andreas Polze and Peter Tröger

7.1 Overview and Motivation

The enactment of service compositions demands a direct interaction with existing
middleware technology, which provides the execution environment for service im-
plementations. The service infrastructure forms the base for a service oriented dis-
tributed application. It combines all relevant functionalities for the development, in-
stallation, usage, and monitoring of single atomic services. Even though this aspect
gained no explicit attention in the beginning of service oriented architecture (SOA)
research and industry adoption, all existing SOA applications rely on such middle-
ware functionalities. SOA vendors meanwhile started to introduce new or updated
software component models in order to consider the specific demands of service
environments on middleware technologies. Also the SOA reference model [123] de-
scribes service infrastructures as explicit concept to be considered.

Middleware acts as a conversion or translation layer, not only in an service ori-
ented software architecture, but in all kinds of distributed systems. Custom-program-
med middleware solutions have been developed for decades to enable one applica-
tion to communicate with another one that runs on a different platform or comes
from a different vendor. Today, there is a diverse group of products that offer pack-
aged middleware solutions. The ongoing shift to communication technologies based
on XML—commonly denoted as Web services—in these middleware platforms is
the base for service infrastructures.

Due to the relevance of the basic technologies and protocols in service provi-
sioning infrastructures, the following section explains some of the relevant aspects
for today’s service infrastructures.

7.2 Types of Middleware

There is a set of commonly accepted classes of middleware, which share some com-
mon principles in their functionality. These classes are not specifically related to

164 A. Polze, P. Tröger

SOA environments, even though all of them are utilised in one or the other way
also in service infrastructures. In general, a middleware layer allows an application
to locate and interact with communication partners transparently across a network.
It ensures the two basic goals of middleware stack, namely the interoperability and
portability of such distributed applications. The interaction functionalities are de-
coupled from the network services, and should scale up in capacity without losing
function. Also reliability and availability functionality as part of middleware lowers
the implementation efforts for single applications.

Most middleware frameworks provide a component model [186], in order to stan-
dardise the packaging layout of software entities. Typical examples are the Enter-
prise Java Bean (EJB) model, the Corba Component Model (CCM) or the .NET
assembly format. Web service development makes no exception from the compo-
nent oriented development, since it only represents another wire format (SOAP) and
interface description language (WSDL) in the according component model. For this
reason, Web service implementations can also benefit from the different functional-
ities provided by the middleware framework. Sometimes these features are denoted
as middleware services (like in CORBA), without any direct relation to the service
term assumed in this book.

Middleware frameworks can be categorised in several ways, according to the pro-
vided feature set or basic architecture. We rely here on the differentiation by Alonso
et al. [10]:

Transaction Processing (TP) Monitors

The Transaction Processing (TP) monitor was perhaps the first product to be called
middleware. Participating as third party beside the requesting client program and the
utilised services in the network, a TP monitor ensures that interactions with mul-
tiple services from one client are grouped by one transactional context. The client
can decide to either commit or abort the transaction at any point in the interaction,
which demands a coordinated transaction coordination for all services by a central
entity.

A TP monitor can reliably and efficiently manage the resources needed by appli-
cations that conform to the TP monitor’s rules. CICS (Customer Information Con-
trol System) and IMS/TM (a message based transaction manager) are the transaction
processing workhorses of the mainframe environment. On UNIX systems, product
like BEA’s TUXEDO, BEA’s TOP END, and IBM’s Encina typically use TP moni-
tors.

Messaging Middleware

Message Oriented Middleware (MOM) provides a point-to-point communication over
a message broker, which enables the decoupling of message sending on producer
side and message receiving on the consumer side. MOM is analogous to e-mail in
the sense it is asynchronous and requires the recipients of messages to interpret their

7 Service Infrastructure 165

Fig. 7.1. Message oriented middleware

meaning. MOM provides a common interface and reliable transport between appli-
cations, based on queueing facilities in the broker and a standardised Application
Programming Interface (API). The messaging system may contain business logic
that routes messages to the appropriate destinations and reformats the data as well.
This includes the publish/subscribe communication pattern, where multiple receivers
get the message from one producer (see Fig. 7.1).

The predominant messaging product for managing asynchronous communication
between applications is IBM’s MQSeries, which has been ported to all major server
platforms. In conjunction with the Component Object Model (COM), Microsoft in-
troduced its own messaging system, Microsoft Message Queue Server (MSMQ).
There is also a variety of freely available and open source implementations for
message brokers. These products are not interoperable in their message exchange,
since the communication protocols between producer/broker and consumer/broker
are specifically optimised for the according product. At least for consumers and pro-
ducers based on Java, the industry agreed on the Java Messaging Service (JMS) [82]
as common access API for products. Newer products meanwhile also adopt the Web
Services Notification (WSN) specification [141], in order to allow a SOAP access to
message broker functionality.

Message oriented middleware has gained an increased consideration with the En-
terprise Service Bus (ESB) concept, initially proposed by Chappell [42]. The archi-
tecture concept is mainly proposed as solution for the integration of heterogeneous
protocols and data formats in service oriented architectures. A ESB represents the
extended version of a classical message broker, which supports not only the routing
and queueing of incoming messages, but also the transformation of XML message
payload data. All ESB products support a variety of adapters and proxies for legacy
system integration. The ESB therefore acts as mediator between service requester
and service provider. Product examples are the Sonic ESB, the IBM WebSphere
ESB, or the Microsoft BizTalk Server.

Beside the central components for message routing and queueing, the ESB con-
cept also includes the notion of an ESB container. This part of the architecture acts
as execution environment for called services and legacy adapters. In most practical
cases, these containers are part of an object based middleware product.

166 A. Polze, P. Tröger

Fig. 7.2. Enterprise service bus

Object based Middleware

Remote Procedure Calls (RPCs) enable the logic of an application to be distributed
across the network. Program logic on remote systems can be executed as simply
as calling a local routine [179]. Classical examples for purely procedural remoting
architectures are the Distributed Computing Environment (DCE) and the Common
Object Request Broker Architecture (CORBA). Distributed object systems are the
most popular kind of middleware approach today. Beside CORBA, systems like Dis-
tributed Component Object Model (DCOM), .NET, and Java Platform Enterprise
Edition (Java EE) provide all facilities for interoperable and distributed object based
applications. The still RPC based programming paradigms in such systems typically
lead to synchronous interaction between processes (components/objects).

Since object based middleware stacks currently form the sole foundation of ser-
vice infrastructures, they are discussed in the following section in more detail.

7.3 Middleware Technologies

Among the middleware categories presented in the previous section, distributed ob-
jects have the biggest potential to solve a wide range of challenges faced by designers
of large software systems.

For our discussion, we separate distributed object architectures into two cate-
gories: component architectures and remoting architectures. We define component
architectures as architectures that focus primarily on component packaging and cross-
language interoperability. In contrast, remoting architectures focus primarily on sup-
port for remote method invocation on distributed objects. Component architectures

7 Service Infrastructure 167

are mainly relevant for service implementations to specify their packaging and de-
ployment format. Remoting architectures can help in service environments by pro-
viding the networking programming model for client and service implementations.
The following sections discuss the most prominent middleware platforms and com-
ponent models in use today.

7.3.1 CORBA

CORBA is a language- and platform-neutral middleware technology that is based on
a standardised communication protocol, an according interface definition language,
and a set of standardised middleware services. CORBA is actively maintained by
the Object Management Group (OMG) standardisation body. The OMG has been
founded in 1989 as a consortium of eight companies (3Com, American Airlines,
Canon, Data General, Hewlett-Packard, Philips Telecommunications, Sun Microsys-
tems, Unisys). Today, the OMG exists as an international non-profit organisation of
more than 800 software developers, network operators, computer vendors, research
institutions, and commercial computer users.

The OMG organises its standardisation work by a central architectural model, the
Object Management Architecture (OMA) [180]. It describes software architectures
for application interoperability, independent of the applications’ implementation lan-
guages, locations, operating systems, and hardware platforms. In this architecture,
CORBA stands for a set of specifications which allow a language- and platform-
independent communication of distributed software objects. The Object Request
Broker (ORB) is the central element of this middleware concept (see Fig. 7.3). Com-
parable to a software bus, the ORB serves as universal communication means for
various objects in heterogeneous distributed systems.

Fig. 7.3. Object management architecture

168 A. Polze, P. Tröger

A CORBA object is independent from a programming language object, meaning
that multiple CORBA objects can be implemented by one language object or vice
versa. It is represented to the outside world by an interface with a set of methods. The
description of this interface is provided in a language-neutral standardised language,
the CORBA Interface Definition Language (IDL).

A particular instance of an object is identified by an object reference. The client
of a CORBA object acquires its object reference and uses it as a handle to make
method calls, as if the object was located in the client’s address space. The ORB is
responsible for all the mechanisms required to find the object’s implementation, pre-
pare it to receive the request, communicate the request to it, and carry the reply (if
any) back to the client. The object implementation interacts with the ORB through
either an Object Adapter (OA) or through the ORB interface. In order to implement
communication across machine boundaries, multiple ORB instances residing on dif-
ferent machines in the network interact typically using Internet Inter-ORB Protocol
(IIOP) [94].

CORBA is frequently compared to Web service technology, claiming that XML
based messaging and interface description are just re-invention of existing solutions
in CORBA. Existing serious comparisons (like [10, 64, 136]) mostly conclude the
same things. Web service stacks and CORBA stacks share well-known approaches
for distributed middleware, such as language-neutral interface descriptions, data en-
coding rules and error handling support. However, the usage of XML in Web service
mainly supports a coarse-grained document messaging approach, while CORBA is
still intended for fine-grained RPC communication between client and server objects.
Both technology stacks therefore have their advantages for different application do-
mains.

7.3.2 Java SE & EE

The pervasive influence of Java as programming language and runtime environment
has resulted in several Java based distributed object architectures. The Java runtime
environment includes the Java RMI, a remoting architecture that shipped first in 1997
with version 1.1 of the Java Development Kit (JDK). Java RMI is a Java-only solution
that provides an elegant mechanism for allowing remote invocations on Java objects.
It includes an API and a binary wire protocol, including the automated generation of
stub and skeleton objects for a transparent remote object access.

The most significant disadvantage of Java RMI is that it can be used only with
the Java programming language. Using both Java RMI and CORBA can alleviate this
disadvantage. In fact, the Java-to-IDL mapping added to CORBA 3.0 eliminates the
need to use Java RMI in many situations.

Based on the RMI mechanisms of the Java runtime, Sun created a set of spec-
ifications for enterprise Java applications. All related standards are bundled as one
component and remoting architecture that is called Java EE. The first release was
introduced in 1999. The design of the programming API’s mainly follows the devel-
opment of the Java language. One example is the introduction of Java Annotations
for configuration in the latest version 5 of the Java EE middleware stack.

7 Service Infrastructure 169

The included APIs are managed by the Java Community Process (JCP), which
produces Java Specification Request (JSR) documents for the different features. Dif-
ferent vendors can implement the specifications, which leads to portability for the
Java EE applications and interoperability for their runtime environments, the appli-
cation server. The specifications rely on a container concept, where each Java EE
component is executed and managed by an application server, instead of running as
own operating system process. The container provides the standardised APIs for the
implementation, and handles relevant middleware features such as security, resource
management and dynamic loading transparently for the implementation.

Figure 7.4 shows the basic architecture of a Java EE environment, which imple-
ments a classical 3-tier architecture. The client tier contains the different application
clients, which either use native Java RMI technology or Web service protocols to
call object functions. The third typical client is a Web browser, where the application
server generates dynamic HTML pages.

All server-side functionality is hosted by an Java EE application server. Sun of-
fers a certification process for Java EE implementations, where a particular applica-
tion server vendor can prove its compliance to the standards. Typical implementa-
tions are IBM WebSphere, JBoss, or BEA WebLogic.

Each application server hosts either web components or business components.
The web tier acts as presentation logic layer, and provides the front-end to the client
application. All components are implemented based on the Java Servlet technology
[80]. In the case of Web browser clients, these components generate HTML output

Fig. 7.4. Java EE architecture

170 A. Polze, P. Tröger

based on an incoming HTTP request. In case of Web service clients, the components
un-marshal the SOAP request data, and either forward it to the business logic or
answer it by them self. Even though the latter approach does not confirm to the ar-
chitectural idea of functional separation, it becomes more and more the pre-dominant
approach in real infrastructures.

The business tier hosts the functional logic of the implementation, and is either
called by web tier components or native RMI applications directly. These business
components confirm to a dedicated software component model, the EJB architecture
[56]. It defines the packaging format and demanded interfaces for the component, but
also the set of available container functions for the implementation. An EJB typically
provide an RMI interface, but can also offer a SOAP interface for Web service clients
[81].

Application servers are typically executed on one machine, even though most
products support a replicated operation for fault tolerance and scalable behaviour.
Other features supported by application servers are transactional requests, legacy in-
tegration of existing infrastructure, authentication and authorisation, or messaging-
style interaction [166]. Java EE application servers therefore form the base of ser-
vice infrastructures in most cases. Many implementations of extended Web service
specifications (see also Sect. 7.5) simply rely on existing implementations from ap-
plication server products. Many open source projects complement the Java EE archi-
tecture with own container architectures [202] or useful libraries for XML handling
or persistence management.

Service Component Architecture

In reaction on the wide-spread usage of Java middleware for service environments,
the Service Component Architecture (SCA) was introduced as an initiative from dif-
ferent industry vendors. It defines a programming model for Java and C++, which
supports the development and execution of distributed service oriented applications
[22]. The concept relies on the idea of a configurable combination of base imple-
mentations, which form a software component for a particular business functionality.
SCA extends the idea of Business Process Execution Language (BPEL) based service
compositions, since the coupling technology is specified in a declarative manner, and
can therefore be changed to other protocols than SOAP. The primary goal of SCA is
the decoupling of service assembling and technical communication protocols.

SCA defines a component as collection of configurations for service implemen-
tation instances. This is a difference to classical definitions of the component term
[186] with a relation to encapsulated software entities. Each SCA component con-
sists of its implementation (e.g. in Java, PHP, COBOL or BPEL), the provided ser-
vices (e.g. over SOAP or Java RMI), the references to other services and the specific
attribute values. Multiple components can configure one implementation in different
ways. This is realised by marking different data structures in the implementation,
which are then configured by the SCA runtime environment, according to the com-
ponent definition. The Java version of SCA realises this by using Java annotations as
the programming language mechanism.

7 Service Infrastructure 171

Multiple components can form a composite, by linking their provided services
and references to each other. This approach is similar to the CCM and allows the late
connection of components to achieve more flexible applications.

SCA considers the need for stateful service interactions with the concept of a
conversational interface, which describes a set of operations to be used together.
Again, the relationship between methods is expressed by attribution. The configured
communication protocol then has the responsibility to relate state data and session
identifiers to the according conversational interface. The session starts with the first
call of a marked method, and ends after a given time or explicitly by calling a finali-
sation method.

SCA demands new service container implementations, which support the com-
ponent configuration approach. It acts therefore as separate component model in ad-
dition to existing environments such as Java EE or CORBA. Vendors and SOA de-
signers need to carefully weigh up the advantages and disadvantages of the different
component frameworks.

Input and output data in SCA should be modelled after the Service Data Objects
(SDO) concept [35]. An SDO contains a disconnected data graph, which is given to
the client as tree structure. The client modifies the structure and the content of the
data tree, and returns the result of the modification to the data source. Beside the data
graph, SDO defines also a data object as node in the tree, and data access services as
access API for the graph traversal and modification.

A data object contains a set of named properties, which either represent a value
or a reference to another data object. Stubs for data objects are generated from sta-
tic schema definitions, such as XML schema [65], SQL result structures, WSDL
definitions for SOAP messages or UML models. The access API is based on the
standardised XPath protocol [45], which allows the traversal and change of XML
data structures. Graph changes are saved, and can be retrieved as change history
afterwards.

7.3.3 DCOM

In the early 1990s, Microsoft has made a strong commitment to Object Linking and
Embedding (OLE) as there solution for heterogeneous distributed environments. Al-
though OLE allowed for interoperability among applications, component packaging
and cross-language interoperability were insufficiently addressed by OLE. Microsoft
addressed these issues with the subsequent Component Object Model (COM), which
became the foundation for a wide range of technologies, among them visual COM
controls named ActiveX. COM is the dominant component architecture in use today.
This is not too surprising since COM is the component architecture for today’s most
dominant desktop operating system—Microsoft Windows. Recently, Microsoft has
coined the acronym COM+ to identify the bundling of the COM infrastructure with a
number of component services. This is a similar development to the CORBA middle-
ware, were packaging format and interoperability specifications are complemented
with default services available for applications.

172 A. Polze, P. Tröger

The DCOM is the distributed extension to COM that builds an object remote
procedure call layer on top of DCE Remote Procedure Call (RPC) to support remote
objects. Since the specification is at the binary level, it allows integration of binary
components possibly written in different programming languages such as C++, Java
and Visual Basic.

COM is a very mature component architecture that has many strengths. Thou-
sands of third party ActiveX controls (in-process COM components) are available in
the market today. Microsoft and other vendors have built many tools that accelerate
development of COM based applications. Microsoft is also providing advanced ser-
vices such as Microsoft Transaction Server (MTS) and Microsoft Message Queueing
Server (MSMQ) to support development of enterprise multi-tier systems. However,
due to the strict focus of Microsoft on the .NET platform for Web service technolo-
gies, DCOM has no relevant role in service oriented environments. In many real-
world scenarios, the legacy integration of DCOM services in a SOA environment
therefore becomes a major issue. For this reason, Microsoft has carried on many of
COM’s concepts into the new .NET framework, which has the potential to lift most
of COM’s limitations.

7.3.4 .NET

In an evolutionary sense, Microsoft’s .NET [160] is the newest and most advanced
component architecture available in the market today. As Java, .NET is based on
a machine-neutral intermediate language format and just-in-time compilers .NET
takes a fundamentally new and sound approach to cross-language interoperability
as it starts with a common object model and type system applicable to all .NET
languages (among them C#, C++, Visual Basic, Jscript, Eiffel#, Cobol, and Scheme).
.NET extends COM as it makes meta-data—runtime type information, which was
optional for COM components—mandatory for each .NET component (so-called
assemblies).

.NET initially marked a departure from earlier component systems by requiring
each component (assembly in .NET jargon) to carry meta-data. Meta-data is used by
the system for integration with legacy technologies, such as COM, however, since
component meta-data is extensible from the programming language level through
the attribute construct, .NET allows the programmer to explicitly express component
properties and requirements, such as security, resource usage, timeliness, or fault-
tolerance assumptions.

The Common Language Runtime (CLR) forms the most important component of
the framework. Comparable to the Java Virtual Machine (JVM), the CLR activates
objects, performs security checks on them, lays them out in memory, executes them,
and garbage-collects them. Conceptually, the CLR and JVM are similar in that they
are both runtime infrastructures that abstract the underlying platform differences.
Microsoft has submitted the Common Language Interop (CLI), which is a functional
subset of the CLR, to ECMA for standardisation, so a third-party vendor could theo-
retically implement a CLR for additional operating system platforms.

7 Service Infrastructure 173

Fig. 7.5. .NET architecture

Figure 7.5 shows the relations among the different basic .NET concepts. Differ-
ent language compilers generate Intermediate Language (IL) code, which relies on
the standardised Common Type System (CTS) definition and the Common Language
Specification (CLS). Implementations can utilise either the standardised Base Class
Library (BCL), or its extended version provided with the Microsoft .NET frame-
work. The relevant class library functions for service oriented environments (like
XML processing or Web service development) are mostly not standardised in the
BCL, and can therefore only be used with Microsoft’s implementation of the .NET
standards.

The application IL code and the meta-data information (like version, security
settings, author information) form the assembly, a deployable binary software com-
ponent similar to a Java JAR file. An assembly can be executed in different virtual
runtime environments, as long as they fulfil the demands of the CLI specification,
which also includes the CLS/CTS compliance. In difference to Java, Microsoft uses
the same assembly format for software components on standard PCs and mobile
devices. The Microsoft .NET runtime environment for PC’s is realised as software
library, which is used by a runtime host for the execution of .NET assemblies. By
this strategy, different runtime hosts can realise different security and resource man-
agement strategies with the same runtime implementation.

Since all basic technologies are standardised at ECMA, it is meanwhile possible
to run .NET assemblies also on non-Microsoft platforms. The most popular example
is the Mono project, which provides a dedicated implementation of BCL and CLI-
compliant runtime. This implementation can be embedded into the popular Apache
Web server, which enables Unix platforms to act as runtime environment for .NET
Web services or other implementations. However, most infrastructure in this area
is still under development and should be carefully evaluated before usage. Due to

174 A. Polze, P. Tröger

its age and widespread commercial adoption, Java EE still forms the more mature
middleware technology for a service infrastructure.

Windows Communication Foundation

The .NET technology from Microsoft supports the implementation and execution of
Web service implementations to the same amount as the related Java solutions. Simi-
lar to Java EE, the .NET environment relies on application servers (BizTalk, Internet
Information Server) for the hosting of service implementations. The programming
models of Java and C# are meanwhile aligned. In both cases, a class implementation
is annotated as Web service implementation, which leads to the automated generation
of Web Services Description Language (WSDL) information and marshalling code.
Like with the SCA approach for Java, Microsoft meanwhile adopted the component
model for a better support of protocol-independent service implementations.

The approach of SCA for service programming is comparable to the Windows
Communication Foundation (WCF) approach in the recent version of the .NET frame-
work. Also here, functional service implementations are separated from the com-
munication capabilities of the middleware. The components define there connection
points by the attribution capability of the .NET programming languages, similar to
the Java annotation mechanism used by SCA. WCF defines a service as combination
of a service class, hosting environment and one or multiple endpoints. Each endpoint
is defined as combination of (A)ddress, (B)inding, and (C)ontract, and is usually
described by an WSDL file, even if the classical SOAP over HTTP transport mech-
anism is not used. WCF forbids any kind of direct interaction, even for in-process
communication. Communication partners always access a local proxy for the remote
peer, which allows the transparent addition of security, life cycle or reliability fea-
tures without changing the implementation.

The address is needed in order to reach the service functionality represented by
the end point. It maps to the <service> section of a WSDL definition, and usually
contain a machine address and port number in the network.

The binding specifies all details of the message encoding of the wire, namely the
message format, representation of data structures, and the utilises transport protocol
(like HTTP). It maps to the <binding> and <portType> definitions in a WSDL
file. WCF supports a rich set of protocols, like WS-I—compliant SOAP over HTTP,
SOAP over TCP, SOAP over named pipes, or SOAP over message queues.

The contract specification describes the interaction patterns and behavioural as-
pects of the service. This is only related to functional aspects of the peer interaction,
and should not be mixed up with the semantic description of service functional-
ity. The according message types and exchange patterns are part of the WSDL sec-
tions <portType>, <message> and <types>. Examples are the service con-
tract (supported operations), data contract (types passed to and from the service), or
the fault contract (errors possibly raised). The service class must be implemented as
.NET assembly, and can therefore be executed by the different runtime hosts shown
in Fig. 7.5.

Every service instance in WCF is bounded to a context in the .NET runtime,
which represents to session with the client. Similar to SCA, the server performs an

7 Service Infrastructure 175

implicit session management, taking care of lifetime issues and garbage collection
efforts. The according semantics are not directly visible to clients.

Since .NET moves from its traditional remoting programming model to the WCF
approach, this technology should be considered for the realisation of new Microsoft-
compliant service implementations.

7.3.5 Summary

Some of the challenges solved by middleware frameworks include component
packaging, cross-language interoperability, inter-process communication, and inter-
machine communication. The distributed processing and distributed object architec-
tures that have been introduced over the last decade exhibit different strengths and
weaknesses based on their ability to meet these challenges.

Existing middleware platforms meanwhile always implement a large set of Web
service protocols. Initially, these protocols just formed an extension of the already
existing remoting paradigms. Well-known examples are the Web service program-
ming with .NET Remoting [126] or the JAX-RPC specifications in Java [185]. This
led to the general understanding of Web services as an RPC implementation, which
does not fit to the intended use cases of the original protocols.

The multitude of different service programming models in the last years clearly
shows that Web services should be discussed from there basic protocol functional-
ities, rather than taking a particular programming model as intended way of using
these protocols. The following section therefore focusses on the Web service stan-
dards itself. Based on this knowledge, the interested reader should refer to the par-
ticular middleware framework documentation, in order to understand the mapping of
original SOAP and WSDL concepts to a particular remoting architecture.

7.4 Web Service Technologies

Since the middle of the 1990s, XML was established more and more as the ex-
change format for structured data of any kind. With the parallel success of Internet
and World Wide Web, developers and industry started to utilise XML not only for
data exchange, but also for the creation of communication protocols. The two most
prominent examples are SOAP and XML-RPC.

Meanwhile, industry has chosen XML communication protocols as the primary
interoperability mechanisms for heterogeneous systems. Even though most authors
stress the independence of SOA concepts from specific protocols and data formats,
XML is the obvious realisation strategy today [139, 112].

Most people refer to XML protocols as Web services, even though the term is
used in different and sometimes conflicting interpretations. A precise and technology
oriented definition is offered by the World Wide Web Consortium (W3C) [30]:

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a

176 A. Polze, P. Tröger

machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialisation in con-
junction with other Web-related standards.

A SOA that is implemented on-top-of Web service technologies is named by
some authors as service oriented computing (SOC) (see also Sect. 2.1.1). Middleware
and service infrastructures are part of the basic services in such an architecture, and
provide the atomic functionalities for a composed service. The management layer
fulfils the relevant tasks for the surveillance of the infrastructure.

The technical realisation of the basic services demands interoperability to differ-
ent providers. The common idea of using XML middleware technology is the stan-
dardised access to service functionality, regardless of the underlying implementation
strategy. For this reason, all relevant protocols and description formats are managed
by standardisation bodies such as the W3C, Organization for the Advancement of
Structured Information Standards (OASIS), and Open Grid Forum (OGF). Similar
to the traditional middleware presented in the last section, also Web service stacks
achieve interoperability by a standardised interface description format—WSDL—
and a standardised communication protocol—SOAP.

7.4.1 WSDL

The description of Web service interfaces is performed in WSDL [44]. A service is
represented as a number of ports, where each of them groups a set of operations and
can be therefore understood similar to a classical interface. Each operation is repre-
sented by messages. Each of the messages is structurally described by XML schema,
a structure definition language for XML documents. A WSDL description can bind
each port to a particular transfer protocol. Typical Web services are bounded to the
SOAP protocol, but there is no problem to use WSDL with a completely different
messaging protocol. Latest developments for the WSDL 2.0 specification try to con-
sider the description of Representational State Transfer (REST) [68] interfaces with
the same interface description language as for SOAP interfaces.

Listing 7.1 shows an example for a simple HelloWorld service, which requires
no input and returns a string message. A useful approach for the analysis of such a
WSDL description is to read it from the bottom to the top.

The <service> section describes the information needed to contact the ser-
vice in the network. The WSDL file therefore not only describes the layout of the
interface, but can also provide the technical information for sending a message. This
is a difference to classical interface description languages such as in CORBA, where
(static) interface definitions and (dynamic) runtime server information are separated.

The <service> section refers to a specific <binding>, which describes the
mapping of the message structures to a particular transport protocol like SOAP. Es-
pecially the style and the use attribute declare the particular SOAP encoding used
for the message transfer. Each binding relates to an <operation> definition from
the <portType> section.

7 Service Infrastructure 177

Listing 7.1. Example for a WSDL description

<?xml version="1.0"?>

<definitions name="HelloWorld"

targetNamespace="http://troeger.eu/helloworld"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="HelloWorldInput"/>

<message name="HelloWorldOutput">

<part name="message" type="xsd:string"/>

</message>

<portType name="HelloWorldPortType">

<operation name="helloWorld">

<input message="HelloWorldInput"/>

<output message="HelloWorldOutput"/>

</operation>

</portType>

<binding name="HelloWorldSoapBinding" type="HelloWorldPortType">

<soap:binding style="document" transport="..."/>

<operation name="helloWorld">

<soap:operation soapAction="http://troeger.eu/HelloWorld"/>

<input><soap:body use="literal"/></input>

<output><soap:body use="literal"/></output>

</operation>

</soap:binding>

</binding>

<service name="HelloWorldService">

<port name="HelloWorldPort" binding="HelloWorldSoapBinding">

<soap:address location="http://troeger.eu/helloworld"/>

</port>

</service>

</definitions>

Each <portType> summarises a set of operations and can therefore be com-
pared to classical interface concepts from programming languages or interface def-
inition languages. Each operation in the portType section consists of zero to one
<input message> elements and zero to one output message elements. The
messaging concept of WSDL supports different kinds of combinations, in order to
express different styles of dependency between caller and callee. The server-side
can either be specified to receive messages without responding (one-way), to send
a response message for each incoming message (request-response), to trigger some
message transfer by itself and wait for an answer (solicit-response), or to send a mes-
sage to the client without expecting an answer (notification). Due to the support of
different communication patterns, WSDL is not only feasible for classical request-
response style service interfaces, but also for the description of Web services with
a message based communication style. This is especially important for SOA frame-

178 A. Polze, P. Tröger

works using an ESB, where a central message broker routes and filters incoming
messages to different consumers.

Each <message> definition in the WSDL file contains of different parts, which
can either be based on simple types provided by XML schema, or on complex types
defined in a separate types section. For the example in Listing 7.1, it can be seen
that the service expects a request-reply communication style, even though the request
message has no defined parts. A WSDL compiler creating client stub implementation
would map this to an operation with no input parameters and one result parameter.
However, these kinds of mappings are not centrally defined by language binding
documents as given with CORBA. For this reason, the usage of WSDL for service
interfaces can only help for interoperability, but not for portability of applications.

7.4.2 SOAP

The messaging protocol for a Web service is SOAP, a specification which is main-
tained by the W3C standardisation body. The standard defines a XML message for-
mat, a processing model, a number of encoding rules for application-specific data,
the syntax of error information, and a number of conventions for implementing re-
mote procedure calls [131].

A SOAP message is emitted by a sender, targeted at a ultimate receiver, and
traverses multiple intermediaries on its way. In contrast to many informal descrip-
tions of Web service technologies, SOAP must be understood as a pure messaging
protocol without a close relation to the RPC programming paradigm. SOAP itself is
also not bound to a particular underlying transport protocol, even though nearly all
Web services implementations relied on the HyperText Transfer Protocol (HTTP) as
communication facility in the past. Meanwhile, modern Web service protocol stacks
support also other transport mechanisms, such as TCP or message queueing systems.
The latter case is frequently referred to as ‘SOAP over JMS’, which expresses the
usage of JMS programming interface in the Web service stack. Since JMS is not a
wire protocol but an API, these Web service implementations still demand a classical
message oriented middleware for the transportation of the message content.

As shown in Listing 7.2, the first part of a SOAP message is the optional message
header, which allows the inclusion of meta-data in each message. This extensibility
mechanism is the basis for all advanced Web service standards, like WS-Security or
routing extension for SOAP messages. The mechanism relies on the basic idea of
intermediaries, where each SOAP message might pass multiple machines on its way
to the ultimate receiver. Each intermediary can process SOAP header elements, like
user credentials, before it forwards the packet to the next node. This feature provides
the prerequisite for many advanced service infrastructure technologies like the ESB
concept. Intermediaries can be enforced to not ignore a particular header entry be-
fore they forward the message. This forms the base for policy-driven Web service
mechanisms. Latest industry products provide complex intermediary implementa-
tions, which can control the SOAP message flow based on such policies and the un-
derstanding of header entries related to a centrally specified Service Level Agreement
(SLA).

7 Service Infrastructure 179

Listing 7.2. Example for a SOAP message

<?xml version=’1.0’ ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsse="..." xmlns:wsu="...">

<env:Header>

<wsse:Security>

<wsse:UsernameToken>

<wsse:Username>Peter</wsse:Username>

<wsse:Password Type="wsse:PasswordDigest">

489utdoghn=xf943=--höo8tgkl</wsse:Password>

<wsse:Nonce>764gfkjhg8gJHGL=jb</wsse:Nonce>

<wsu:Created>2008-03-01T06:44:03Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</env:Header>

<env:Body>

<p:itinerary xmlns:p="http://troeger.eu/reservation">

<p:departure>

<p:departing>Potsdam</p:departing>

<p:arriving>Hawaii</p:arriving>

<p:departureDate>2008-05-01</p:departureDate>

<p:seatPreference>firstClass</p:seatPreference>

</p:departure>

</p:itinerary>

</env:Body>

</env:Envelope>

The main part of the SOAP message is the SOAP body, which contains the XML
payload to be transferred. For the marshalling of payload data, the SOAP specifi-
cation distinguishes between messages for remote procedure calls (rpc-style) and
messages for the transfer of structured documents (document-style). Both messag-
ing styles can use different encodings of the payload data. With SOAP encoding, the
structured payload data (like arrays or object graphs) is encoded according to rules
from the SOAP specification. With literal encoding, the transmitted data follows a
XML schema definition, and therefore acts a self-contained XML document. The
chosen vocabulary for the different encoding approaches turned out to be confusing
in the past—after all, the encoding does not mandate a particular kind of usage.

One major problem with Web services in the past was the missing support for
all the encoding variations in the different toolkits. For some time, Java environ-
ments only supported the RPC/encoded style of Web services, while other toolkits
has chosen to use the document/literal encoding with some slight extension (called
document/wrapped encoding). The WS-I interoperability standardisation body was
founded in 2003 by leading industry vendors, in order to solve this problem by re-
stricting the original specifications. For this reason, the meanwhile established com-
mon way of encoding SOAP message payload is the document/wrapped style. This
holds not only for XML document transmission, but also for remote procedure calls
based on SOAP.

180 A. Polze, P. Tröger

Binary data was originally intended to be transferred in a larger XML repre-
sentation. Meanwhile, several specifications like Message Transmission Optimiza-
tion Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) support the
transmission of the binary raw data together with the SOAP message. This decreases
the amount of transferred data, which is specially important in document oriented
SOA environments.

7.4.3 UDDI

The third basic building block for Web service architectures is the Repository for
Universal Description, Discovery and Integration (UDDI) specification. It describes
the necessary interfaces and data models of a directory for WSDL descriptions. Even
though UDDI was initially designed to work as general business registry, it works
nowadays mainly as background technology in service registries from different ven-
dors. These products basically rely on the UDDI data model, while the access API’s
are complemented by less complex interfaces such as Java API for XML Registries
(JAXR).

The initial idea of UDDI—internet-wide central service registries—turned out
to be a miss. The public open UDDI registries, created at the time of ongoing stan-
dardisation by SAP, Microsoft, and IBM, were closed in 2005. While the official
announcement mainly argued with a finished test phase, it must be noted that the
registries were simply without useful content for the public audience.

Service registries meanwhile have there major application in company-internal
SOA installations, were company policies ensure consistent and valuable set of ser-
vices in the registry (see also Sect. 8.2.1). The according products are constantly ex-
tended with additional governance and monitoring capabilities, in order to not only
register, but also analyse and supervise the service landscape in a SOA installation.

7.5 WS-*

With the three basic specifications in hand, industry vendors and standardisation bod-
ies immediately started to create advanced technologies and API definitions. The
extensibility mechanism of SOAP allow the introduction of new message header
elements, in order to implement extended features such as security, reliable messag-
ing, state access or transactional messaging. The extended headers and their possible
influence on the SOAP body are defined by documents from standardisation bod-
ies, but sometimes are also published as pure industry proposals. The hype phase of
Web service technology led to a huge number of such specifications, typically de-
scribed as “WS-*” or “WS-hell”. The main problem was (and still is) the existence
of conflicting and under-specified SOAP and WSDL extensions from different inter-
est groups. In many cases, multiple specifications solve the same type of problem in
different ways. Figure 7.6 shows a possible classification of the WS-* specification
landscape.

7 Service Infrastructure 181

Fig. 7.6. Classification of Web service specifications

The figure categorises the different specifications based on their technical de-
pendencies, instead of referring to the intended usage stated in the according doc-
ument. A dependency between two specifications is given when one specification
refers to elements from the other specification. A typical example is the usage of
WS-Addressing functionalities in higher-layer specifications such as WS-Security.
The typical classes are:

Messaging: The basic messaging protocol in Web service environments is SOAP,
which acts obviously as technical base for all other specifications. Some ex-
tensions of SOAP, like the MTOM, the WS-Addressing or the WS-Notification
specification optimise SOAP for new use cases.

Meta-Data: The meta-data of Web services is described in WSDL. All extensions
aiming on an improved meta-data description realise this by an extension of the
WSDL description format. Typical examples are WS-Policy or WS-Addressing.
The UDDI specification also falls into this category, since it enables the man-
agement and standardised search for Web service meta-data.

Security: Comparatively many specifications refer in their technical description to
elements from the WS-Security standards. In most cases, the integration is an
optional mechanism to ensure end-to-end security between sender and ultimate
receiver. WS-Security stands for the combination of several basic specifications,
like the X.509 Token Profile or the SOAP With Attachments (SWA) Profile.

Interoperability: Different implementations of SOAP, WSDL, and UDDI had inter-
operability problems in the initial years of Web service technology. This was
(and still is) partly reasoned by the degrees of freedom in XML schema, but
also by the incomplete, erroneous and misleading standardisation documents.
Because of these interoperability issues, a consortium of industry vendors works
since 2002 in the Web Service Interoperability Organization (WS-I) for correct-
ing, restricting or improving existing Web service specifications. The resulting
profile definitions for existing standards are meanwhile considered by all major
Web service products.

182 A. Polze, P. Tröger

Transactions: Web service specifications in this area define mechanisms for the trans-
actional exchange of SOAP messages. Even though a number of specifications
was created in the past, WS-Coordination [67] from OASIS turned out to be the
accepted approach.

Resource access: Web services are not only used as interface to software compo-
nents, but also as control mechanism for physical resources such as printers,
storage units, scientific instruments, or compute clusters. Specifications in this
area mainly arose from the Grid Computing research field. Typical examples are
WS-ResourceProperties or Ws-ResourceLifetime.

Management: Some specifications allow the management of resources, software
components and Web service instances over Web service interfaces. Two exam-
ples in this field are the Management Using Web Services (MUWS) specification
and the Management Of Web Services (MOWS) specification.

Reliability: In order to allow a reliable transfer of messages, SOAP extensions from
this class support the utilisation of existing reliability middleware (such as
TIBCO or IBM MQSeries) over Web service interfaces. Typical features con-
sidered by these specifications are transmission acknowledgements and repeated
transfers. One of the currently established specifications is WS-Reliability [95].

Technical details of all specification classes are provided by different publica-
tions [64, 10], even though the original standards document is always the best source
of information. A long-time study of the authors discussed in the next section gives
an initial impression of the current adoption rate for the different specifications.

7.5.1 Empirical Analysis

In the context of the Adaptive Services Grid (ASG) project (see Sect. 9.1) the authors
analysed publicly available Web service descriptions for their technical properties.
The goal of this study was a better understanding of the frequently cited “service
landscape”, in order to identify relevant Web service specifications and interoper-
ability problems. Even though most SOA architectures and services are intended for
public access from the Internet, the study can still show relevant developments.

For the inspection of public Web service descriptions, different sources for WSDL
data where used. The search engine Google was queried for results with the file type
“wsdl”. This query was repeated several times, until no more new results were avail-
able. The same kind of crawling was performed with the Yahoo search engine. The
second kind of information source were the public Web service listings xmethods.net
and strikeiron.com. All sites with an available WSDL description were additionally
crawled for more descriptions. The data retrieval was repeated on a weekly base from
June 2007 to January 2008.

The constantly repeated crawling procedure led to 5523 unique WSDL files from
public sources in 6 months of evaluation time. Duplicate content and invalid XML
was ignored. Even though many of the identified service descriptions do not represent
a really callable endpoint, they give a first understanding of the technology adoption
in the field:

7 Service Infrastructure 183

• The unification of the different SOAP encoding in use to the document/literal
encoding (as intended by WS-I) is not completed so far. 33% of the WSDL
files specified the RPC/encoded SOAP style for their service, which is primarily
used by Java Web service implementations with the JAX-RPC toolkit. 54% of
the WSDL files specified the WS-I-conformant document/literal encoding. The
remaining ones either specified an illegal or no encoding.

• 92% of the WSDL definitions contained no additional information about the
endpoint of the Web service (<[ns:]address location=>). Under the assumption
of real service descriptions, this shows the demand for additional usage infor-
mation with such a service. This might not lead to a problem with manually
implemented Web service clients, but it complicated the enabling process as de-
scribed in Sect. 4.2. The detailed analysis further showed that in most such cases
the service demands the usage of specific client libraries, transport protocols, or
non-standardised SOAP header extensions. In many cases, the fetched WSDL
was also only intended as example code fragment.

• 55% of the WSDL definitions contain XML elements from the extended Web
service specifications described in the last section. This was identified by testing
the name space declarations of XML elements. The most prominent specifica-
tions are the different versions of WS-Addressing (17%), WS-Security (16%),
the WSRF specifications (15%), WS-Policy (11%), WS-Notification (9%), WS-
BPEL (7%), WS-MetadataExchange (5%), and WS-Trust (3%).

The statistic confirms the identified demand for manual integration or adapter
implementations on the level of the service infrastructure. Even though automated
service composition and discovery remains the ultimate goal of semantic service pro-
visioning architectures, the practice still requires a lot of manual “plumbing” tasks.
The adoption rate of WS-* specifications slowly increases, even though real-world
usage is only identifiable for a few of the available specifications. Service infrastruc-
tures need to consider this investigation, mostly by shielding the higher layers (like
service composition and profiling) from the ever-changing technical Web service
standards. The service infrastructure as autonomous part must therefore always be
considered in a service oriented environment.

7.6 Future Trends

Distributed systems—such as service oriented applications and their infrastructures—
are inherently very dynamic, which can make them difficult to program. Resource
management is a prerequisite for predictable system behaviour, but is often not
enough for most distributed applications. The abstractions offered by various middle-
ware frameworks—with or without Web service protocols—can be used to provide
resource management in a distributed system at a high level.

Starting in late 1990s, distributed systems research has begun to focus on pro-
viding comprehensive Quality-of-Service (QoS), an organising concept referring to
the behavioural properties of an object or system, to help manage the dynamic na-
ture of distributed systems. The goal of the research is to capture the application’s

184 A. Polze, P. Tröger

high-level QoS requirements and then translate them down to low-level resource
managers. QoS can help runtime adaptation. But it also helps the applications evolve
over their lifetime to handle new requirements or to operate in new environments,
issues more in the domain of software engineering but also of crucial importance to
users and maintainers of distributed systems.

Recent middleware frameworks, like the CORBA 3.0 Component Model (CCM),
or the Microsoft .NET framework, allow the expression of non-functional component
properties, such as resource requirements, timing and security constraints, or fault-
tolerance assumptions on the component level using language constructs or com-
ponent meta-data. The according fulfilment mechanism from operating system and
virtual runtime environment can help to realise Quality of Service (QoS) demands on
service execution from higher layers in a service provisioning stack. As one example,
the ASG project investigated the dynamic usage of Grid Computing resources for re-
liable service execution at the service infrastructure level [193, 194]. Future efforts in
both research and industry products will further concentrate on this interconnection
of high-level SOA approaches and existing middleware technologies.

8

Service Engineering Methodology

Joachim Bayer, Michael Eisenbarth, Theresa Lehner, and Kai Petersen

8.1 Motivation

Today, enterprises have to keep pace with increasing business changes in every
sphere—customer preferences, competition, technology, economic conditions, sourc-
ing and development strategy, distribution and service models, regulatory require-
ments, pricing models, and market scope. According to statements of most CEOs,
their companies are neither responsive enough to these changing business conditions
nor agile enough to pursue new market opportunities [25]. Further, in the IDC study
from January 2004, 89% of respondent business executives rated IT as a critical or
important factor in the overall success of their business.

The service oriented paradigm provides enterprises’ IT solutions to be more flex-
ible and agile. IT solutions based on a service oriented architecture consists of a
framework for integrating business process and supporting IT infrastructure as se-
cure, standardized components, called services, that can be reused and combined to
address changing business priorities [25].

Thus, a service platform is the solution for today’s enterprises and their increas-
ing business changes. In order to establish the solution in an enterprise the specific
engineering processes have to be integrated. And applications, services and domain
ontology (see Fig. 8.1) have to be engineered. Services provide a specific kind of
functionality which are described syntactically as well as semantically. The spec-
ification comprises the attributes and their values according to concepts from the
domain ontology.

8.2 Service Engineering Process

As each engineering process is product-related our service engineering process de-
pends on the applications that will be developed. Service providers engineer services

186 J. Bayer et al.

Fig. 8.1. Products used for service provisioning

that fulfil the requirements of a variety of service consumers in order to realize ser-
vice oriented applications. Service consumers often share common requirements, but
at the same time require consumer specific solutions. In order to satisfy the needs of
a large customer base, the service provider requires an engineering methodology that
allows for developing consumer specific service applications of high quality within a
short time to market. By drawing on methods and techniques from product line engi-
neering which is a successful paradigm for achieving this goal, the service provider
can be supported in providing services that can be tailored and reused between dif-
ferent applications.

The benefit of service reuse is illustrated in the Fig. 8.2. When not reusing ser-
vices in order to support several number of applications that share commonalities
(e.g., all applications need to support credit card payment) and variable parts (e.g.,
some applications also would like to support debit card payment), the cumulative
number of services is higher. Consequently, a higher number of services needs to
be maintained and monitored which leads to additional effort. From the develop-
ment perspective, exploiting variability and commonality for leads to shorter times
to market and higher quality [156, 46].

8 Service Engineering Methodology 187

Fig. 8.2. Benefits of service reuse

Fig. 8.3. The application and service engineering process

The engineering process for service oriented applications is divided in applica-
tion engineering and service engineering as shown in Fig. 8.3. Application engineer-
ing consists of the phases service landscaping and service scoping.

• Service Landscaping
During application engineering, the needs of the service consumers interacting
directly with the application are identified and documented as high level require-
ments. Based on these requirements, a set of services is identified which fulfils
these requirements, referred to as the service landscape.

• Service Scoping
Scoping is a method that helps to focus investments on reuse where they pay off
in the best possible way [172]. Applying scoping to services, scoping helps to
make the following decisions at different stages of the engineering process:
1. Which applications should be supported by the service provider?
2. Which technical domains are required to support the selected applications

and what are the boundaries of the domain?

188 J. Bayer et al.

3. Which services and their compositions should be implemented in a reusable
way?

• Requirements Analysis
In this phase, the externally visible properties of the service in form of func-
tional and quality requirements are specified. For capturing the requirements of
services, we propose to use the KobrA method [14] which allows to specify com-
ponents independently of the environment in which they are used, which makes
this approach well suited for reuse-focused service engineering. The output of
the requirements analysis phase is a service requirements specification as UML
class diagrams and semantic service specification.

• Service Design
In service design, the internal properties of the service is specified. That is, the
internals of a service are completely documented in form of behaviour expressed
as UML activity diagrams. Furthermore, services constituting one service on the
requirements level are documented as UML class diagrams.

• Service Implementation
In this phase, the properties defined in service design are implemented and com-
piled using the underlying technologies and programming language. Further-
more, the service interface in Web Services Description Language (WSDL), as
well as the semantic service description using Web Services Modeling Language
(WSML) is generated.

• Service Testing
The goal of service testing is to assure that the service implementation fulfils
the functional and quality requirements. During testing, test cases are generated
based on external and internal properties of the service.

• Service Registration
When the service passed the test phase, it is registered to become accessible for
invocation in the service application

Following subsections deal with the application engineering activities that scopes
the service landscape and all service engineering activities. The methods as well as
the artefacts used in the activities are described in more details.

8.2.1 Service Landscaping

Requirements engineering is a key area in successful software engineering and soft-
ware development. Requirements engineering deals with system requirements, which
are specifications of the services a system should provide, the constraints on the sys-
tem and additional background information, which is required to develop the system.
Requirements engineering is the systematic process concerned with the elicitation,
understanding, analysis and documentation of the system requirements. Require-
ments engineering itself is called an “engineering” process as the process itself is
used in practical and systematic way where trade-offs have to be made to find the
best solution [111].

8 Service Engineering Methodology 189

Identification of the Service Landscape

Considered from a requirements engineering point of view, the major benefit for
providers is the identification of valuable applications and the required services.
Whatever application would be valuable to develop depends on the application do-
main an end service consumer wants to have supported and what kind of business
process are used in that domain. Business process analysis is therefore a major activ-
ity in an application engineering oriented requirements engineering approach. After
the decision for developing a specific application has been made, it is up to the re-
quirements engineering approach to identify the required services out of the service
landscape. Within an Application Engineering process [190], three activities are re-
lated to requirements engineering. These activities are identification of sources for
requirements, elicitation of requirements and analysis of requirements.

In the first activity, identification of sources for requirements, we propose to
structure the context in which the service oriented application will be employed.
Structuring the context helps to assure that important sources of requirements are
not overlooked in order to arrive at a complete service landscape. The context can be
subdivided in four facets that should be considered when looking for requirements
sources. These are the object facet, IT and system facet, usage facet [138] and devel-
opment facet [97, 155]. Within these facets, sources for requirements are the relevant
stakeholders as well as specific types of documentation.

• Object facet
The object facet is a source for objects that should be represented by the service
application. An object can be a person or role (e.g., driver of a limousine in the
travel booking domain), a material object (e.g., the limousine) or an immaterial
object (e.g., the time and price of for the limousine usage). Relevant sources for
requirements are domain experts for the domain in which the application will
be used, existing systems, domain specific documentation as well as laws and
regulations. Examples for requirements sources in the travel booking domain are
travel agents, existing flight booking systems and laws related to tourism.

• IT and system facet
The IT and system facet represents the systems (hardware and software) with
which the service oriented application will interact. Furthermore the companies
IT strategies and the maintenance of systems are considered. Sources for re-
quirements in the IT facet are system administrators, technical documentation
of components, and documentation of IT strategies. In the context of service ori-
entation, sources for requirements are for example experts on middleware and
grid technologies as well as documentation on standards for the implementation
of services (like XML, WSDL and SOAP). Furthermore, existing services are
identified within this facet which will interact with the newly developed services.

• Usage facet
In this facet, the users and usage scenarios are represented. Sources for require-
ments on how the system will be used are relevant user groups, domain specific
specifications and existing user interfaces. Examples in the travel agency do-

190 J. Bayer et al.

main are travel agents interacting with the system, documentation of business
processes within travel agencies and user interfaces used in these agencies.

• Development facet
The development facet is concerned with the development process of the ser-
vice oriented application. Sources for requirements are roles involved in defining,
using and managing the development process. Furthermore, existing standards,
previous experience from post mortem analysis of finished projects and best prac-
tices should be considered when defining the development process. A source for
best practices are for example process maturity models like CMMI [188].

When the sources are identified, the requirements are elicited from these sources.
A variety of methods exist to elicit requirements from the relevant stakeholders. Such
methods are focus groups, interviews, observation, workshops, studies of documen-
tation, use of prototypes and questionnaires. A systematic review [52] was conducted
to determine which technique is the most efficient one. The conclusion of the re-
view was that structured interviews seem to be best suited to elicit requirements.
Furthermore, not only interviews or documents should be considered when eliciting
requirements. In addition, existing service repositories can be used to enrich the re-
quirements specification in the early requirements engineering process. As proposed
by Zachos et al. [211], the requirements analyst together with service consumers for-
mulates search queries for service registries based on an existing requirements spec-
ification. When querying the service register, services are returned that in some form
are related to the initial requirements specification. The descriptions of the returned
services are explained to the relevant stakeholders who (together with the require-
ments engineer) use this information to either refine the existing requirements or add
new requirements to the initial requirements specification. Thereafter, the process is
repeated iteratively. That is, the updated requirements specification is used to define
new search queries and the retrieved service descriptions are used as input to help
further refine the requirements and so forth.

Drawing the Service Landscape

The major output of the Service landscaping is the service landscape that depicts a
list of all services that have been identified during the application engineering and
specifies the change requests to the domain and service ontologies that arise due to
the semantic impact of the identified required services. Services can be graphically
documented by using the graphical element as shown in Fig. 8.4. For each service

Fig. 8.4. A service element

8 Service Engineering Methodology 191

Fig. 8.5. An example service landscape

such an element is drawn representing the service. An example service landscape
is depicted in Fig. 8.5. This type of diagram is intended to give an overview and
a summary of the identified services that are required to implement the envisioned
application. The simple notation facilitates the reduction of complexity, since the
number of available services might be high. The diagram also serves as means for
communication with service engineers.

The service landscape addresses only the service need of the envisioned appli-
cation without considering the providers service portfolio. The different identified
services are categorized in order to identify services offered by the platform and
services that have to be implemented (i.e. serving as input for service engineering).
According to this categorization, three situations are feasible for identified services:

• The identified service does already exist and is available in a platform executable
form.

• The identified service does already exist, but must be re-engineered for platform
execution.

• The identified service does not exist and must be engineered.

8.2.2 Service Scoping

The goal of the scoping activity is to define the service portfolio of a service provider.
It is not unusual that a service provider is specialized in a single domain (e.g. flight-
booking). But even then there might be multiple infrastructures. In order to exploit
the benefits of service reuse, it is a key issue to develop the right set of services in a
reusable manner at the right level of genericity. If the chosen scope is inappropriate,
either effort will be wasted on domains and services that will not be sufficiently
used or the developed services will not be able to adequately support the required

192 J. Bayer et al.

Table 8.1. Service application map

Service Domains Services Tourist Service applications

Transportation Travel Route
Travel booking Taxi Service X

Limousine Service X X

Location Information Provide GPS Coordinates X
Provide Map24 Infopoint

range of products. The scoping approach results mainly in three work products: an
application overview, domain descriptions, and a service list. In the following, we
present work products produced during the scoping activity as well as the role of
variability in service reuse.

Scoping Work Products

The application overview provides an overview of the products or applications the
organization can provide or support by providing services. It is thus a conjecture on
the side of the service provider regarding future applications that the infrastructure
will be used for. It gives a characterization of the applications in terms of the major
functionalities or user tasks they provide or shall support. The domain descriptions
provide a break-down of the applications functionality in terms of the major tech-
nical areas relevant to it. The third work product is a list of the services that are
provided by the identified domains. As result of the scoping activities, a service-
application map is created. The development of the service-application map is also
a final consistency-checking step that may lead to restructuring of the domains. In-
consistencies and especially conflicting services and infrastructure constraints can be
identified with the help of this map. The map is also a good structuring mechanism to
show the relationship between services and applications and helps to identify com-
monly used services in applications and rather rarely used services. The following
table shows an example of a service-application map.

The example map in Fig. 8.1 shows that the service provider aims to support
two tourist applications. He offers two services for transportation embedded in the
providers travel booking domain. Additionally, the application, which displays a
travel route to a customer will require the support of a GPS coordinate service.

The services identified and listed in the service landscape that are currently not
available must be developed and engineered. To fill the gap of the required services
for the application development, the service engineering process is initialized.

The Role of Variability for Service Reuse

Variability can be defined as the ability to customize or change a system [200]. For
example, a payment service is able to support different payment options, depending
on the needs of the application in which the service is used. One application might

8 Service Engineering Methodology 193

Fig. 8.6. Notation of the orthogonal variability model

require credit card, debit card and cheque while another application requires pay
pal and debit card. The degree of customizability of a service or a composition of
services determines how well the service or its composition can be reused in different
service applications. A service that is able to support all types of different payment
options has a high degree of genericity.

Variability is documented in so called variability models. In this chapter, we use
the orthogonal variability model [36] to show which role variability plays in order
to facilitate reuse in service oriented applications. The orthogonal variability mod-
els documents what varies (variants) and how it varies (variation points). Figure 8.6
shows the notation used for the orthogonal variability model. Variation points are
represented by triangles and variants are represented by boxes. Variants and varia-
tion points are related to one another, represented by either solid or dashed lines.
A solid line means that the variant is mandatory to select while a dashed line means
that the selection is optional. A service that is able to realize the requirements as-
sociated to all the variants has a high degree of genericity. That is, the service can
be reused in a variety of different applications. When looking at the service map in
the previous section, we can see that the limousine service is used in different appli-
cations. Sometimes, this is only possible when the service can be customized to the
specific needs of the application. Between different variants as well as variants and
variation points, so called constraint dependencies are documented. If one variant
requires the selection of another variant, then this is expressed by a requires depen-
dency. On the other hand, if variants are mutually exclusive, this is expressed by an
exclude dependency. The variants of the orthogonal variability model are related to
requirements which need to be fulfilled to implement the variant.

In order to determine how well certain compositions can be reused, Petersen
et al. [153] propose to calculate the coverage of the orthogonal variability model in
order to determine how well a service or a set of services can be reused in differ-
ent applications. Thereby, the variability model documents the variability between
the applications that shall be supported by services. Figure 8.7 illustrates how the
coverage of the variability model is defined. If the requirements related to a variant
are fully fulfilled by a service or composition of services, then the variant is cov-
ered. If all variants related to a variation point are covered, then the variation point is
covered. Consequently, the service compositions allows the selection of all variants
and thus provides a high degree of genericity. Finally, the overall variability model
is covered, if all its variation points are covered. The service provider can use these

194 J. Bayer et al.

Fig. 8.7. Coverage of the orthogonal variability model

calculations when having different alternatives of service compositions in order to
determine which composition provides the best reuse potential.

Formally, the variability model OVM is defined as the tuple of variation points
VP and variants V .

OVM := (VP, V), V := {v1, . . . , vn}, VP := {vp1, . . . , vpm}. (8.1)

To calculate the coverage of different elements of the variability model like variants,
variation points and the overall orthogonal variability model, [153] define different
mappings documenting how the elements of the variability model are related to each
other.

They define a mapping VMap (see Formula (8.2)) of variants to a power set of
requirements. The mapping VMap delivers all requirements that needs to be fulfilled
so that the variant is fully implemented.

VMap : V → ℘(R), R := {r1, . . . , rp}. (8.2)

The Mapping Variability Dependency VD gives all variants which related to a varia-
tion point. In the example, VD(2) delivers the variants c, d and e.

VD : VP → ℘(V). (8.3)

The mapping SMap delivers all requirements that are covered by a given service.

SMap : S → ℘(R), S := {s1, . . . , sq}. (8.4)

The mappings describing the relations between services, variation points, vari-
ants and requirements can now be used to calculate the coverage of the OVM. The
mapping VCover is used to calculate the coverage of a variant v by a set of services
S, resulting in a value between 0 and 1. In particular, we calculate the arithmetic
average as the number of requirements covered by the set of services divided by the
total number of requirements related to the variant.

VCover : V × ℘(S) → [0..1], (8.5)

8 Service Engineering Methodology 195

Fig. 8.8. Calculation of coverage

VCover(v, S′) = | ∪s∈S′ SMap(s) ∩ VMap(v)|
|VMap(v)| . (8.6)

The mapping VPCover calculates the coverage of a variation point vp for a given
set of services S′. For this mapping, a function is defined which calculates the sum
of the coverage of all variants related to a variation point divided by the number of
variants associated to the variation point.

VPCover : VP × ℘(S) → [0..1], (8.7)

VPCover(vp, S′) =
∑

v∈VD(vp) VCover(v, S′)
|VD(vp)| . (8.8)

The mapping VMCover determines the coverage of the OVM by a set of services
S′. The function for this mapping calculates the sum of coverage of all variation
points that are part of the OVM divided by the number of variation points related to
the OVM.

VMCover : ℘(S) → [0..1], (8.9)

VMCover(S′) =
∑

vp∈VP VPCover(vp, S′)
|VP| . (8.10)

In Fig. 8.8 an example of the calculation of variability coverage is shown.

8.2.3 Requirements Analysis

The starting point for service engineering is the service landscape, capturing all re-
quired services on one hand and the domain ontology on the other. The goal of ser-
vice requirements analysis and the subsequent service design is to identify and define
the required services in terms of their functional and non-functional properties. This
includes the interaction between the service and its environment (i.e., user or in-
voking application) along with exchanged data, as well as services used along with
exchanged data.

196 J. Bayer et al.

The similarity of software components and services suggest the use of estab-
lished component based software engineering methods to document services. Soft-
ware components and services are both self-contained pieces of functionality that
are deployed in different context’s to realize software reuse while providing flexi-
ble applications. We use the KobrA method [14] to this end. The KobrA component
model can easily be adapted for the documentation of services. Then, the KobrA
method can be used to support the activities subsequent to service design, namely
implementation and testing.

The KobrA Method

The KobrA method represents a synthesis of several advanced software engineering
technologies, including product line development, Component Based Software De-
velopment (CBSD), frameworks, architecture centric inspections, quality modelling,
and process modelling. These have been integrated in the KobrA method with the
basic goal of providing a systematic approach to the development of high quality,
component based application frameworks.

All products in the KobrA method are organized around, and oriented towards,
the description of individual components. This means that, as far as possible, there
are no global or system-wide products; all products (and accompanying processes)
are defined to carry information only related to their particular component. The ad-
vantage is that components (and the products that describe them) can then easily be
separated from the environment in which they were developed and therefore can be
reused independently. This characteristic makes the KobrA method well-suited to be
used for service engineering.

Applications in the KobrA method are represented as a set of components orga-
nized in the form of a tree. Each component is described at two levels of abstraction,
a specification, which defines the component’s externally visible properties and be-
haviours, and thus serves to capture the contract that the component fulfils, and a
realization, which describes how the component fulfils this contract in terms of con-
tracts with lower level components. Components are modelled as a mixture of textual
and UML-based (graphical) models. The advantage of using the UML is that frame-
works and associated application are independent of any particular programming
language or component technology.

The transformation of an application into an executable form is carried out in a
distinct set of activities that are essentially orthogonal to the design activities. The
implementation activity takes UML models and maps them, through a series of well-
defined refinement and translation steps into an executable representation (e.g., high-
level source code). Finally, the build activity actually creates binary load modules
ready for deployment in the target environment.

We use the KobrA component specification as a basis for the service require-
ments specification and the semantic service specification and the KobrA component
realization as a basis for the service design.

8 Service Engineering Methodology 197

Service Requirements Specification

The service requirements specification describes the externally visible properties of
a service. The information captured in the service requirements specification is used
as a basis for the service specification and, thus, for service identification, selection,
composition, negotiation, contracting, invocation, monitoring, and failure recovery.

To fulfil this task, the service requirements specification must contain the com-
plete information on a number of different aspects of a service, namely structure and
quality. The structure of a service captures the service’s choreography. The choreog-
raphy is the complete syntactical information about a service, that is, the signatures
of its operations. The signature of an operation captures the name by which a service
can be called, as well as the types of input and output data, respectively. The func-
tionality of a service captures the externally visible effects of the operations provided
by a service. Finally, the quality of a service captures quality aspects of the service
execution, referred to as quality of service.

The information documented in a service requirements specification is the com-
plete information that is necessary to use a service. The internal structural infor-
mation of a service is captured in UML class diagrams. A service is denoted as a
class with stereotype «service»; the different operations with their signatures are
given as methods of such a service class. An example of how to document structural
information of a service is presented in the context of service design.

The quality of service is documented considering a variety of different quality
aspects. For example, different quality requirements need to be fulfilled by the ser-
vice, like performance, reliability or security. Quality of service is documented by
the Profile for Modeling Quality of Service and Fault tolerant Characteristics and
Mechanisms [76] (UML QoS profile). The UML QoS profile provides a framework
that allows to document and quantify quality requirements. The advantage of the
framework is that it allows to define a quality reference model tailored to the specific
needs on the company and project level. In order to define the quality of service,
Rinke and Weyer [162] propose a lightweight process which considers the previ-
ously introduced four context facets as sources for quality requirements.

Figure 8.9 shows how quality requirements can be documented. In the first step,
quality characteristics are defined. A quality characteristic is a quantifiable aspect of
a service (like performance) and is documented as a class stereotyped as «QoSChar-
acteristic». Furthermore, quality of service dimensions are defined and stereo-
typed as «QoSDimension» [76]. A quality of service dimension quantifies a qual-
ity of service characteristic. For example, the quality dimension latency can be quan-
tified as maximum latency. The definition of a QoS Characteristic can be made more
specific by inheritance. Based on a more abstract definition of the QoSCharacter-
istic for Latency (e.g., Latency4Composition), we can define what latency means
on a more detailed level (e.g., Latency4Encryption). That is, we for example define
that the maximum latency should be considered for Encryption and that the max-
imum latency is measured in seconds. For other services, we might require other
definitions for latency and thus create further sub-classes. When we have defined the
quality of service, we can annotate the quality requirement within the requirements

198 J. Bayer et al.

Fig. 8.9. Documentation of quality requirements

specification as a comment. Within the comment, we use the stereotype «QoSCon-
straint» introduced in [76]. In our example, the activity encrypt data in the activ-
ity diagram documenting the behaviour of a service for online payment should have
a maximum latency of 0.03 seconds. The annotation refers to the definition of how
to quantify the quality requirement, i.e., Latency4Encryption.

Semantic Service Specification

The semantic specification of a service describes the effects of invoking that service
(see Sects. 3.4 and 4.3). That is, it describes what happens when an operation of the
service is invoked. This information is captured in operation schemata that describe
for each operation of a service the pre-conditions and assumptions that must be ful-
filled before the respective operation can be invoked, as well as the post conditions
and effects that can be guaranteed after the execution. For example, in order to pay
with credit card using an online payment service, the pre-condition is that data sub-
mitted to the service has to be encrypted for security reasons. An example for a post
condition is that the credit card data has been successfully validated and the credit
card is either rejected or accepted.

8.2.4 Service Design

The service design describes the internal properties of a service. The information
captured in the service requirements specification and in the semantic service speci-
fication is used to describe how a service provides the properties given in the service
specification. The design thus captures a service’s orchestration, as well as other ser-
vices that are required by a service.

The service design documents the internal structure of a service, its behaviour, as
well as related quality aspects. The internal structure describes the internal structure
of a service along with sub-services a service requires to fulfil its task. This internal

8 Service Engineering Methodology 199

Fig. 8.10. Documentation of the internal service structure

structure must be related to the externally visible structure captured in the service
requirements specification. The behaviour describes how a service provides its func-
tionality by showing the respective algorithms. The quality aspects described in the
service realisation document how relate the quality asserted in the service specifica-
tion captured in the service specification is provided.

The information documented in a service design describes the internals of a ser-
vice completely. The internal structure is, like the external structure, captured in
UML class diagrams. Actually, the internal class diagram is a refinement of the ex-
ternal one, relating the internal to the external structure. The example in Fig. 8.10
shows how a payment service is structured. It consists of several services, like one
service for encryption, and different services for payment (payment by credit card
and payment by debit card). The operations for accessing the payment service are
defined in the PaymentInterface.

The behaviour of a service describes the functionality of a service. It might be
documented using UML activity diagrams, in which the different sub-services that
are used by a service are represented by swim lanes, as shown in Fig. 8.11.

Input for implementing a service is the service design and the domain-specific
ontology. The result is a service implementation and a service specification, as de-
scribed in Sect. 3.4.

8.2.5 Service Testing

The implemented service then needs to be tested. Inputs for testing are the service
implementation, the service design, and the service specifications. What can be tested

200 J. Bayer et al.

Fig. 8.11. Documentation of service behaviour

highly depends on the availability of documentation and development artefacts. We
distinguish two different cases:

In the first case, the service offered by the service provider was developed by the
service provider. That is, all documentation and implementation is available from
the service provider. Thus, the service provider is able to derive test cases from the
source code using white box testing techniques [195], like for example path coverage
or statement coverage. On the composition level, the information of how the services
are composed is available to the service provider, including the flow in which services
are executed. Here, path testing can be applied as well [17].

In the second case, the service provider uses services of other service providers,
i.e., the service provider has the role of an service integrator. Therefore, the inter-
nal structure of the service is not available to the service provider, as other service
providers avoid to make their implementations public [215]. In consequence, testing
has to be done based on the available interface and documentation of the service.
That is, black box testing techniques have to be applied based on the available ser-
vice specification. In addition to that, test cases can be automatically derived from
WSDL [17]. To conduct tests based on WSDL, four coverage criteria are proposed
by Bai et al. [17]. These are part coverage, message coverage, operation coverage
and flow coverage.

• Part coverage: Each part, which is mapped to a parameter, should be covered by
at least one positive and negative test case.

• Message coverage: In WSDL, one distinguishes between input and output mes-
sages. One input message should be at least covered by one positive and negative
test case and an output message is covered if each equivalent class is covered by
at least one test case.

• Operation coverage: Each operation should be covered by one negative and pos-
itive test case.

• Flow coverage: Based on the parameter data sets of operations (i.e., input and
output parameters) the dependencies between different services can be identified
and a flow of service execution can be generated. The flow is covered if each path
is covered by one positive and one negative test case.

However, this situation is not always desirable because of two reasons. The first
reason is that tests only derived from specification (i.e., black box testing) is not

8 Service Engineering Methodology 201

adequate to achieve adequate testing [74]. Secondly, when a service is changed, re-
gression testing becomes necessary. However, as the internals of a service are not
available, the change might stay unnoticed and is not tested properly. To avoid this
problem, [215] propose to offer testing as a service in itself where only trusted ser-
vice providers are allowed access to the internal structure of services.

8.3 Summary

In this chapter, we presented the development life cycle in order to develop ser-
vices to support service based applications. Thereby, we focused on how to develop
services considering service reuse in order to produce services in shorter time to
market and with high quality. The phases presented are requirements engineering
for services, service design, service implementation and test and service registration.
Within the development process, we proposed different methods that can be used in
the service development process. These are for example frameworks for structuring
the context to arrive at complete service maps, scoping, variability to facilitate ser-
vice reuse, UML as a means for documenting and designing service based systems
with respect to functional and quality properties as well as a guideline which test-
ing techniques should be used in the context of services. All the previous chapters
together with this chapter have given a full overview on how semantic service pro-
visioning is intended to work. The next chapter will give a short overview on the
Adaptive Services Grid project which was the major basis for our finding and this
book.

9

Application and Outlook

Dominik Kuropka, Harald Meyer, Peter Tröger, and Mathias Weske

Even though semantic service provisioning is still a hot research topic,1 many projects
and collaborations already gained a tremendous amount of experiences. This chapter
sketches the prototype experiences from one of these projects, the European integra-
tion project ASG, which was also the starting point for this book. The chapter further
discusses possible next steps for advanced service provisioning platforms.

9.1 Adaptive Services Grid Project

The ASG project with 22 partners from 7 countries was funded by the European
Commission in the Sixth Framework Programme. It developed a prototypical archi-
tecture for semantic service provisioning platform to identify relevant components
and their responsibilities, as well as the interactions between them. The reference
architecture was validated by a prototypical implementation, in collaboration with
industrial partners.

The research of relevant semantic service technology and according possible use
cases led to three focus points:

• Seamless integration of heterogeneous existing services: Mechanisms for service
enabling reduce the maintenance and modification costs for large numbers of
existing services and functionalities. This has the potential to ease integration of
services and data formats.

• On-demand creation of service compositions: Current service integration, based
on manual programming, makes it hard to cost-effectively maintain and modify
a complex service world. Semantic service provisioning lifts the interface to ser-
vices from a manual to a logical level, and supports service composition based
on automated tools. The adaptive service composition implies a cost reduction in
service provision.

1 http://www.nessi-europe.com.

204 D. Kuropka et al.

• Reliable service provision with assured quality of service: The future service
world will be based on global and dynamic services, which can be composed to
answer the needs of complex service requests. Dynamic service re-enactment, re-
binding or re-composition provide reliable solutions for non-reliable services by
adapting to changes and failures, thus provides the end-customer with a reliable
service delivery.

These three features sum up typical expectations on a semantic service provisioning
platform. They therefore formed also the conceptional frame for components in the
ASG platform.

One relevant issue with the design of such a platform is the role of the service
consumer. Most discussions with third parties about the ASG concepts raised the
question of how the generated composed services are accessed. In the concept of
ASG, end-user applications or back-end systems act as service consumers. They send
a semantic service request to the platform. This request is syntactically similar to a
semantic service description. However, while the description gives details about a
existing service, a semantic service request specifies a desired service. The platform
tries to find a service or a composition of services which are able to meet a posed
request.

End-users only interact with the platform through the front-end applications,
which formulate the ontology-compliant semantic queries. The main reason for this
approach is the inherent complexity of semantic description languages, which con-
flicts with the commercial demand for domain-specific and user friendly interfaces.
In conclusion needs very application domain or usage scenario not only a proper
domain ontology definition, but also a matching front end application which formu-
lates the semantic queries. These applications take the data from the user and build a
semantic service request out of them either by using a template, or by assembling a
request out of given building blocks.

The ASG approach for semantic service provision platforms relieves the business
functionality developer from dealing with discovery and composition of services.
Additionally to this, it raises the reliability by providing failure handling on the basis
of service re-binding and re-composition.

Beside the interaction with the end user, the service platform is also coupled to
integrated atomic services from other parties. Also this part of the architecture raises
a set of questions:

How can a mapping between heterogeneous data formats and protocols of inte-
grated services be realized? In which way are domain ontology and functional ser-
vice descriptions coupled? How to realise monitoring and negotiation functionality
for existing services, which are demanded by service profiling and composition?

The main concept for achieving this is the introduction of a adaptation layer for
atomic services, the service infrastructure [194]. It provides a unified invocation,
monitoring and deployment interface for internal atomic, as well as proxy services.

9 Application and Outlook 205

9.1.1 ASG Software Architecture

The ASG architecture and according prototype implementation consists out of five
logical components, Facade, Dynamic Service Composition, Semantic Service Dis-
covery, Adaptive Process Management, and Service Infrastructure, as shown in
Fig. 9.1.

The Facade component provides programmatic interfaces that can be used by
external applications or tools. It provides two major interfaces, for the composed
service consumers and for the service integration tooling.

The domain ontology, which is the foundation for the description of services
and for the semantic service requests, can be accessed and uploaded via the Facade.
The domain ontology describes the concepts that are of relevance in the application
domain of the platform. These concepts can describe data objects and their relation
to each other like for example defining an invoice as a structure consisting out of
an address, an order and an amount to be transferred. Furthermore, the ontology can
define relationships which are usually not directly represented in usual information
systems, but which are useful to describe the functionality of services.

Regarding the books use case scenario, an example would be the relationship
“domainNameServers” between a domain name and a list of servers. With such a
relationship, the functionality can be formally described. The effect of the example
service is that for the entered domain name, a list of servers will be returned which
have the domain name registered.

To be usable, services have to be registered in the platform. This registration
happens via an external Service Integration Tool that uses the programmatic interface

Fig. 9.1. The ASG reference architecture

206 D. Kuropka et al.

of the Facade. The following information needs to be provided to properly register
a service: input, preconditions, output, effects, non-functional properties, and the
proxy code.

All invocations of external services are conducted via proxies, which are stored
and executed in the service infrastructure component. The major task of the prox-
ies is the provision of translations between protocols and mediation of data types,
according to an XML-Schema [208] which is derived via rules from the domain
ontology. This ensures that the data is compatible and can be exchanged between
services during composition enactment without manual mediation.

In case that the service to be registered is not accessible via Web service pro-
tocols, the proxies are also responsible for a protocol translation. In summary, the
proxies handle the technical and data format issues of service integration, while the
description of input, preconditions, output, and effects are used for the semantic in-
tegration.

The input of a service specifies the required input of a service by referring to
the domain ontology. Preconditions can be defined that have to hold for the input.
For example, it can be defined that credit card data which are the input of a service,
have to be the data of the customer and not someone’s else data. Similar to this, the
output defines the output data of a service while the effects can specify additional
hints about the meaning and influence of the output on the further execution.

Two functionally different services may exist that have the same input and out-
put, even though they provide different functionality. Such differences can be mod-
elled adequately by preconditions and effects. Also non-functional properties can be
defined for a service. However these properties are only applicable if they are not
depending from the concrete input or output data of the service [4].

While the Facade takes requests from service requesters, the Service Infrastruc-
ture is responsible for the controlled execution of proxy or internal service implemen-
tations. Furthermore, it enables the surveillance of services by the profiling compo-
nent.

In contrast to the two externally connected components, the remaining com-
ponents are used only internally. The Dynamic Service Composition component is
triggered by the Facade to create services compositions on demand. The Adaptive
Process Management is responsible for the negotiation and binding of services, pro-
filing of the monitored data provided by the Service Infrastructure, the service level
agreement management and for the enactment of service compositions. It therefore
contains an extended workflow engine, which is coupled with the newly developed
negotiation and profiling components.

The Semantic Service Discovery is able to perform discovery and matchmaking
of services. It also provides a service and ontology repository as well as reasoning
functionality. The functionality of the three internal components will be explained in
more detail in the next section, since their functionality is in strong relation to the
whole service delivery approach of ASG.

9 Application and Outlook 207

9.1.2 Use Case Scenario

The described architecture of a semantic service provisioning platform was imple-
mented by the ASG project on the basis of existing ‘real-world’ services. In order
to work with a realistic set of services and composition problems, the project imple-
mented an Internet service provider (ISP) scenario from one of the industrial partner.
This scenario is also used all through the book.

The ISP is specialized on products like domain registration and web hosting, and
intended to use the ASG platform for a combined usage of B2B services. In order
to realize its Web hosting products, this company uses remotely accessible services
from companies such as VeriSign or PayPal. The resulting Web hosting purchase
service is offered to resellers. One motivation for the usage of a dynamic service
composition platform is the necessary adaptation to the external service landscape.
Utilized third party functionality, like the ordering of domain names, changes con-
stantly in price and quality. This leads to expensive continuous adaptions of the Web
hosting service implementation, which was now intended to be replaced by a dynam-
ically created service composition.

One benefit for the resellers is, that they do not need to deal with the individual
integration of the various basic services, as shown in Fig. 9.2. Instead, the reseller
uses the interface of the composed service as provided by the ASG platform.

Figure 9.3 shows an already bound service composition, which is automatically
created by the ASG platform. Translated to natural language, the semantic service
requests which is the origin of the composition looks like this: “Given the following
domain x and the following user data y the goal state to achieve is that the domain
is registered at an registrar, our name server is updated, a web hosting account is
created, and a default forwarding for the domain is set up.” Both, the (Directi and
Verisign) services for domain registration and the Plesk server management
service expect as precondition that the existence of a domain is checked prior their
execution. Therefore, a domain checking service is executed at the beginning of the
service composition. The server management service can naturally only be executed
on existing web hosting accounts, therefore a web hosting account is created before
a domain is created. Figure 9.3 shows how the service composition is recovered in
case the Denic service for domain checks fails. In this case, the platform searches
for a semantically equivalent service like from Verisign and replaces (re-binds)
the failed service.

Figure 9.4 shows how re-planning can affect a service composition. In the ASG
scenario, two proxy services for real-world payment services with test accounts were
used: PayPal and SaferPay. While PayPal can handle the payment activities in
one step, the SaferPay payment service which needs two steps for this task. Both
alternatives are semantically equivalent and can be therefore replaced by each other.
The ASG platform reacts on the outage of the PayPal service with an according
partial adoption of the composed service implementation.

Further details about the conceptional design and the prototype implementation
of ASG are available from the project home page and the according publications,
such as [165, 190, 134, 133, 129, 194, 69].

208 D. Kuropka et al.

Fig. 9.2. ISP scenario for ASG platform

9.2 Outlook

There is no doubt that future applications will use more and more existing software
systems, so that the integration of functionality from various source systems will be
one of them most important factors in system development. Furthermore, there is
little doubt that the integration of functionality from heterogeneous sources will be
based on services, i.e., well-specified units of functionality with a business value.
Specifically in the Web services world, there are accepted standards for syntactic
specifications of services and also of service compositions.

Doubt increases when it comes to rich service specification languages that can ex-
press functional and non-functional aspects beyond syntax. While recently different
approaches emerged from the research community, there is no completely satisfy-
ing language proposal that is both pragmatic and formally sound. Formal soundness
is required if runtime service composition without human intervention is aimed at.
Unfortunately, specifying a sufficiently complex functionality in a mathematically
precise way is hard, to say the least. The halting problem from theoretical computer

9 Application and Outlook 209

Fig. 9.3. A service re-binding example

Fig. 9.4. A service re-planning example

science determines that it is not possible to devise an algorithm that determines for
given program and input data whether the program terminates, not to speak about
application semantics.

210 D. Kuropka et al.

Experiences from the Adaptive Services Grid project show that complete seman-
tic specifications are possible in a narrow application domain. In these domains, the
concepts can be formalized and related to each other in a domain ontology, the ser-
vices can be semantically annotated and integrated, so that they be discovered, com-
posed, and enacted in an adaptable way. Experiences also shows that not all aspects
of a service based application requires a high level of adaptability and dynamic be-
haviour. From this discussion we can derive an agenda for research in service engi-
neering

• Research methodology: Real-world use cases are required to shape the research
questions. Answers to these questions need to be refined and validated by the use
cases.

• Vertical completeness: Use cases need to stretch multiple levels of systems de-
sign, ranging from business level to conceptual levels and, eventually, to software
levels. An approach can be successful only if the solutions developed for the dif-
ferent levels are integrated with each other.

• Specification completeness: A complete and precise specification of sufficiently
complex real-world services requires massive overhead and is, in many cases,
even not possible. Therefore, the level of detail and precision in which services
are specified needs detailed investigation.

• Level of dynamicity: We state that dynamic behaviour does not come for free.
Therefore, detailed investigations are required to specify where the level of dy-
namicity provided by the devised service platform is actually required.

This book is the first to devise a complete picture of an advanced service pro-
visioning platform that facilitates the specification, dynamic discovery, composition,
and flexible enactment of services. It can be used as a basis for tackling the hard prob-
lems sketched above, whose solutions will impact future generations of advanced
service platforms.

References

1. W. Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, A. Weijters. Workflow
mining: A survey of issues and approaches. Data and Knowledge Engineering, 47:237–
267, 2003.

2. W. Abramowicz, J. Gwizdala, T. Jakubowski, M. Kaczmarek, A. Kliber,
M. Kowalkiewicz, D. Zyskowski. A survey of qos computation for web service
profiling. In S. Dascalu (editor), Proceedings of the ISCA 18th International Conference
on Computer Applications in Industry and Engineering, 2005.

3. W. Abramowicz, M. Kaczmarek, M. Kowalkiewicz, D. Zyskowski. Architecture for ser-
vice profiling. Proceedings of 2006 IEEE Services Computing Workshops (SCW 2006),
2006.

4. W. Abramowicz, M. Kaczmarek, D. Zyskowski. Duality in web services reliability. In
Proceedings of the Advanced International Conference on Telecommunications and the
International Conference on Internet and Web Applications and Services, page 165,
2006.

5. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task (WS-
HumanTask), Version 1.0, 2007.

6. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People
(BPEL4People), Version 1.0, 2007.

7. S. Agarwal, S. Handschuh, S. Staab. Annotation, composition and invocation of semantic
web services. Journal on Web Semantics, 2(1), 2004.

8. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma.
Web Service Semantics: WSDL-S. World Wide Web Consortium (W3C), November
2005. W3C Member Submission, 7 November 2005. Available from http://www.w3.org/
Submission/WSDL-S/. http://www.w3.org/Submission/WSDL-S.

9. H. Alani. TGVizTab: An ontology visualisation extension for Protégé. In Proceedings of
the Workshop on Visualization Information in Knowledge Engineering (K-CAP), 2003.

10. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services—Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer-Verlag, New York, 2004.
ISBN 3-540-44008-9.

11. T. Andrews et al. Business process execution language for web services version 1.1.
Technical report, BEA, IBM, Microsoft, SAP AG, Siebel Systems, 2003.

212 References

12. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, M. Xu. Web Services Agreement Specification. Globus Al-
liance, USC, ISI, Univa, IBM, ANL, NEC, HP, Platform Computing, August
2004. http://www.gridforum.org/Public_Comment_Docs/Documents/Public_Comment_
2004/WS-AgreementSpecification_v2.pdf.

13. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, M. Xu. Web Services Agreement Specification (WS-
Agreement). Globus Alliance, USC, ISI, Univa, IBM, ANL, NEC, HP, Platform
Computing, September 2006. http://www.ogf.org/Public_Comment_Docs/Documents/
Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf.

14. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wust, J. Zettel. Component-Based Product Line Engineering with UML.
Addison-Wesley Professional, Reading, 2001. ISBN 0201737914.

15. V. Atluri, S. A. Chun. Handling dynamic changes in decentralized workflow execution
environments. In 14th International Conference on Database and Expert Systems Appli-
cations, 2003.

16. A. Avizienis, J. Laprie, B. Randell. Fundamental concepts of dependability. Technical
report, UCLA & LAAS & Newcastle University, 2001.

17. X. Bai, W. Dong, W.-T. Tsai, Y. Chen. Wsdl-based automatic test case generation for
web services testing. In Proceedings of the International Workshop on Service-Oriented
System Engineering (SOSE 2005), pages 1–6, 2005.

18. M. S. C. Bartolini. Management by contract. Technical report, Hawlett Packard, 2004.
http://www.hpl.hp.com/techreports/2003/HPL-2003-186R1.pdf.

19. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Grüninger, R. Hull, M. Kifer, D. Martin,
D. L. McGuinness, S. McIlraith, G. Newton, D. D. Roure, M. Skall, J. Su, S. Tabet,
H. Yoshida. Semantic Web Services Framework (SWSF). World Wide Web Consortium
(W3C), 2005. http://www.w3.org/Submission/2005/07.

20. BEA, IBM. BPELJ: BPEL for Java, 2004.
21. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-

Schneider, L. A. Stein. OWL Web Ontology Language Reference—W3C Recommenda-
tion 10 February 2004. World Wide Web Consortium (W3C), February 2004. W3C Rec-
ommendation 10 February 2004. http://www.w3.org/TR/owl-ref/.

22. M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller, A. Kar-
markar, A. Malhotra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple,
M. Rowley, K. Tam, S. Vorthmann, P. Walker, L. Waterman. SCA Service Component
Architecture—Assembly Model Specification v1.0. Open Service Oriented Architecture
Collaboration, March 2007. http://www.osoa.org/.

23. D. Berardi, D. Calvanese, G. De Giacomo, M. Mecella. Composition of services with
nondeterministic observable behavior. In Proceedings of the 3rd International Confer-
ence on Service Oriented Computing (ICSOC’05), Lecture Notes in Computer Science,
vol. 3826, pages 520–526. Springer, New York, 2005.

24. J. Bettin. Model-driven software development. MDA Journal, 13(4), 2004.
25. N. Bieberstein, S. Bose, M. Fiammante, K. Jones, R. Shah. Service-Oriented Architec-

ture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap (The develop-
erWorks Series). IBM Press, 2005. ISBN 0131870025.

26. B. Bloch et al. Web services business process execution language version 2.0. Techni-
cal report, OASIS, 2005. http://www.oasis-open.org/committees/download.php/14616/
wsbpel-specification-draft.htm.

27. A. Blum, M. Furst. Fast planning through planning graph analysis. Artificial Intelligence,
90:281–300, 1997.

References 213

28. M. Boddy. Imperfect match: PDDL 2.1 and real applications. Journal of Artificial Intel-
ligence Research, 20:133–137, 2003.

29. E. P. Bontas. A Contextual Approach to Ontology Reuse: Methodology, Methods and
Tools for the Semantic Web. Ph.D. thesis, Freien Universität Berlin, 2006.

30. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard.
Web Services Architecture. World Wide Web Consortium (W3C), February 2004. http:
//www.w3.org/TR/ws-arch/.

31. R. J. Brachman. What IS-A is and isn’t: An analysis of taxonomic links in semantic
networks. IEEE Computer, 16(10):30–36, 1983.

32. R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, A. Borgida.
Living with CLASSIC: When and How to Use a KL-ONE-Like Language, Morgan-
Kaufmann, San Mateo, 1991, pages 401–456.

33. R. J. Brachman, J. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171–216, 1985.

34. R. Brafman, J. Hoffmann. Conformant planning via heuristic forward search: A new ap-
proach. In S. Z. Sven Koenig, Shlomo Zilbe Koenig (editors), Proceedings of the 14th In-
ternational Conference on Automated Planning and Scheduling (ICAPS-04), pages 355–
364. Morgan-Kaufmann, San Mateo, 2004.

35. S. Brodsky, R. Patel. Service Data Objects. JSR 235, December 2003.
36. S. Bühne, K. Lauenroth, K. Pohl. Modelling requirements variability across product

lines. In Proceedings of the 13th IEEE International Requirements Engineering Con-
ference (RE 2005), pages 41–52, 2005.

37. S. Burbeck. The tao of e-business services—the evolution of web applications into
service-oriented components with web services. Technical report, IBM Software Group,
October 2000. http://www.ibm.com/developerworks/webservices/library/ws-tao/.

38. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. Wiley, New York, August 1996. ISBN
0471958697.

39. G. Carter. LDAP System Administration. O’Reilly, 2003.
40. F. Casati et al. Adaptive and dynamic service composition in eflow. Technical report,

Hawlett Packard, 2000. www.hpl.hp.com/techreports/2000/HPL-2000-39.pdf.
41. D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377,

1987.
42. D. A. Chappell. Enterprise Service Bus. Theory in Practice. O’Reilly, July 2004. ISBN

978-0596006754.
43. P. P. Chen. The entity-relationship model—toward a unified view of data. ACM Trans.

Database Syst., 1(1):9–36, 1976.
44. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web services description lan-

guage (wsdl) 1.1. Technical report, World Wide Web Consortium, 2001. http://www.w3.
org/TR/2001/NOTE-wsdl-20010315.

45. J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0, November 1999.
46. P. Clements, L. Northrop. Software Product Lines: Practices and Patterns (The SEI

Series in Software Engineering). Addison-Wesley Professional, Reading, 2001. ISBN
0201703327.

47. E. F. Codd. The Relational Model for Database Management: Version 2. Addison-
Wesley, Reading, 1990.

48. M. Comuzzi, B. Pernici. An architecture for flexible web service QoS negotiation. In
EDOC, pages 70–82, 2005.

49. Congress of the United States. Public company accounting reform and investor protection
act (sarbanes-oxley act), 2002. Pub. L. No. 107-204, 116 Stat. 745.

214 References

50. S. Conrad, W. Hasselbring, A. Kosche. Enterprise Application Integration. Grundlagen–
Konzepte–Entwurfsmuster–Praxisbeispiele. Spektrum Akademischer Verlag, October
2005. ISBN 978-3827415721.

51. B. Curtis, M. I. Keller, J. Over. Process modeling. Communications of the ACM,
35(9):75–90, 1992.

52. A. M. Davis, Ó. D. Tubío, A. M. Hickey, N. J. Juzgado, A. M. Moreno. Effectiveness of
requirements elicitation techniques: Empirical results derived from a systematic review.
In Proceedings of the 14th International Conference on Requirements Engineering (RE),
pages 176–185. IEEE, New York, 2006.

53. F. de Boer, M. Bonsangue, R. van Buuren, L. Groenewegen, S. Hoppenbrouwers, M.-E.
Iacob, H. Jonkers, M. Lankhorst, E. Proper, A. Stam, L. van der Torre, G. V. van Zan-
ten. Concepts for architectural description. Technical report TI/RS/2003/007, Telematica
Institute, December 2004. ArchiMate Deliverable 2.2.1 v4.0.

54. J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, D. Fensel.
The Web Service Modeling Language WSML—WSML Final Draft 5 October 2005. Dig-
ital Enterprise Research Institute (DERI), October 2005. WSMO Final Draft D16.v0.21.
http://www.wsmo.org/TR/d16/d16.1/v0.21/.

55. G. Decker, O. Kopp, F. Leymann, M. Weske. Bpel4chor: Extending bpel for modeling
choreographies. In Proceedings of the IEEE 2007 International Conference on Web Ser-
vices (ICWS). IEEE Computer Society, New York, July 2007.

56. L. DeMichiel, M. Keith, Enterprise JavaBeans 3.0 (Final Release). JSR 220, May 2006.
http://www.jcp.org/en/jsr/detail?id=220.

57. W. E. Deming. Out of the Crisis. MIT Press, Cambridge, 1982.
58. M. Do, S. Kambhampati. Sapa: A multi-objective metric temporal planner. Journal of

Artificial Intelligence Research, 20:155–194, 2003.
59. J. Domingue, L. Cabral, F. Hakimpour, D. Sell, E. Motta. IRS-III: A platform and in-

frastructure for creating WSMO-based Semantic Web services. In Proceedings of the
Workshop on WSMO Implementations (WIW 2004). Frankfurt, Germany, 2004.

60. B. Dournaee. Introduction to ebXML, June 2004. http://dev2dev.bea.com/pub/a/2004/12/
ebXML.html.

61. K. Erol, D. S. Nau, V. Subrahamnian. Complexity, decidability and undecidability results
for domain-independent planning: A detailed analysis. Technical report CS-TR-2797,
UMIACS-TR-91-154, SRC-TR-91-96, University of Maryland, 1991.

62. K. Erol, D. S. Nau, V. Subrahamnian. Complexity, decidability and undecidability results
for domain-independent planning. Artificial Intelligence, 76(1–2):75–88, 1995.

63. H. L. et al. Web service level agreement language specification. Technical report, IBM,
2003. http://www.research.ibm.com/wsla/.

64. I. M. et al. Service-orientierte Architekturen mit Web Services. Konzepte–Standards–
Praxis. Spektrum Akademischer Verlag, 2007. ISBN 978-3827418852.

65. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition. W3C Recom-
mendation, October 2004.

66. J. Farrell, H. Lausen. Semantic Annotations for WSDL and XML Schema (SAWSDL).
World Wide Web Consortium (W3C), August 2007. http://www.w3.org/TR/sawsdl.

67. M. Feingold, R. Jeyaraman. Web Services Coordination (WS-Coordination) Version 1.1.
OASIS Open, April 2007.

68. R. T. Fielding, R. N. Taylor. Principled design of the modern Web architecture. ACM
Trans. Inter. Tech., 2(2):115–150, 2002. ISSN 1533-5399. doi:10.1145/514183.514185.

69. M. Flehmig, P. Tröger, A. Saar. Design and Integration of SLA Monitoring and Negotia-
tion Capabilities. Adaptive Services Grid Project—Deliverable D5.II-7, August 2006.

http://dx.doi.org/10.1145/514183.514185

References 215

70. M. Gelfond, V. Lifschitz. The stable model semantics for logic programming. In R. A.
Kowalski, K. Bowen (editors), Proceedings of the Fifth International Conference on
Logic Programming, pages 1070–1080. MIT Press, Cambridge, 1988.

71. J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubzy, H. Eriksson, N. F.
Noy, S. W. Tu. The evolution of Protégé: An environment for knowledge-based systems
development, 2002. http://citeseer.ist.psu.edu/545954.html.

72. A. Gerevini, A. Saetti, I. Serina. Planning through stochastic local search and temporal
action graphs. Journal of Artificial Intelligence Research, 20:239–290, 2003.

73. M. Ghallab, D. Lau, P. Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann, San Mateo, 2004.

74. J. B. Goodenough, S. L. Gerhart. Toward a theory of test data selection. IEEE Transac-
tions on Software Engineering, 3(3), 1975.

75. B. N. Grosof, I. Horrocks, R. Volz, S. Decker. Description logic programs: Combining
logic programs with description logic. In Proc. Intl. Conf. on the World Wide Web (WWW-
2003). Budapest, Hungary, 2003.

76. O. M. Group. Uml profile for modeling quality of service and fault tolerance character-
istics and mechanisms (version 1.0), 2006.

77. T. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 2(5):199–220, 1993.

78. T. Gruber. Toward principles for the design of ontologies used for knowledge sharing.
International Journal on Human-Computer Studies, 43(6):907–928, 1995.

79. X. Gu, K. Nahrstedt, R. Chang, C. Ward. Qos-assured service composition in managed
service overlay networks, 2003.

80. M. Hall, L. Brown. Core Servlets and JavaServer Pages, Vol. 1: Core Technologies. Sun
Microsystems Inc., 4150 Network Circle, Santa Clara, CA 95054, USA, second edition,
2004.

81. G. Hambrick. The EJB advocate: SOA applications using Java EE. WebSphere Journal,
November 2006.

82. M. Hapner, R. Sharma, J. Fialli, K. Stout. JMS specification. Sun Microsystems Inc.,
4150 Network Circle, Santa Clara, CA 95054 USA, 1.1 edition, April 2002.

83. J. Heinsohn, D. Kudenko, B. Nebel, H.-J. Profitlich. An empirical analysis of termino-
logical representation systems. Artificial Intelligence, 2(68):367–397, 1994.

84. M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel. Semantic business process
management: A vision towards using semantic web services for business process man-
agement. In IEEE International Conference on e-Business Engineering (ICEBE 2005),
pages 535–540. Beijing, China, 2005.

85. M. Hepp, D. Roman. An ontology framework for semantic business process man-
agement. In A. Oberweis, C. Weinhardt, H. Gimpel, A. Koschmider, V. Pankratius,
B. Schmizler (editors), eOrganisation: Service-, Prozess, Market-Engineering, vol-
ume 1 of Proceedings of the 8th International Conference Wirtschaftsinformatik 2007,
pages 423–440. Universitaetsverlag Karlsruhe, Karlsruhe, February 28–March 2, 2007.

86. A. Hess, E. Johnston, N. Kushmerick. Assam: A tool for semi-automatically annotating
semantic web services. In Proceedings of the International Semantic Web Conference
2004, pages 320–334. Springer, New York, 2004.

87. J. Hoffmann. Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research, 20:291–341, 2003.

88. J. Hoffmann, R. Brafman. Contingent planning via heuristic forward search with implicit
belief states. In Proceedings of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05). Morgan Kaufmann, San Mateo, 2005.

216 References

89. J. Hoffmann, B. Nebel. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

90. D. Hollingsworth. The workflow reference model version 1.1, technical report wfmc-tc-
1003. Technical report, Worflow Management Coalition, 1995.

91. I. Horrocks. Using an expressive description logic: Fact or fiction? In A. G. Cohn, L.
Schubert, S. C. Shapiro (editors), KR’98: Principles of Knowledge Representation and
Reasoning, pages 636–645. Morgan Kaufmann, San Francisco, 1998.

92. M. N. Huhns, M. P. Singh. Service-oriented computing: Key concepts and principles.
IEEE Internet Computing, 09(1):75–81, Jan/Feb 2005.

93. IBM, SAP. WS-BPEL Extension for Sub-processes BPEL-SPE, 2005.
94. O. M. G. Inc. CORBA Components—v3.0 Full Specification, June 2002. http://www.

omg.org/cgi-bin/doc?formal/02-06-65.
95. K. Iwasa. Web Services Reliable Messaging TC—WS-Reliability 1.1. OASIS Open, No-

vember 2004.
96. K. Jank et al. Adaptive service grid deliverable d3.k-1: Initial service creation analysis

and requirements (part 1), 2005.
97. M. Jarke, K. Pohl. Establishing visions in context: Toward a model of requirements

processes. In Proceedings of the 14th International Conference on Information Systems
(ICIS 1993), pages 23–34, 1993.

98. N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, C. Sierra, M. Wooldridge. Automated
negotiation: Prospects, methods and challenges. International Journal of Group Decision
and Negotiation, 10(2):199–215, 2001.

99. J. M. Joachim Miller. Mda-guide version 1.0.1, 2003. http://www.omg.org/docs/omg/
03-06-01.pdf.

100. N. Karten. Establishing service level agreements, 2006. http://www.nkarten.com/sla.
html.

101. A. Keller, G. Kar, H. Ludwig, A. Dan, J. L. Hellerstein. Managing dynamic services:
A contract based approach to a conceptual architecture. In Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium (NOMS 2002), 2002.

102. G. Keller, M. Nüttgens, A.-W. Scheer. Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Arbeitsbericht Heft 89, Institut für
Wirtschaftsinformatik Universität Saarbrücken, 1992.

103. U. Keller, R. Lara, A. Polleres, I. Toma, M. Kiffer, D. Fensel. WSMO discovery. Working
Draft D5.1v0.1, WSMO, 2004. http://www.wsmo.org/TR/d5/d5.1/v0.1/.

104. M. Kifer, G. Lausen. F-logic: A higher-order language for reasoning about objects, in-
heritance, and scheme. In SIGMOD Conference, pages 134–146, 1989.

105. M. Kifer, G. Lausen, J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the Association for Computing Machinery, 42(4):741–843, 1995.

106. E. Kim, Y. Lee. Quality model for web services. Technical report, OASIS Web Services
Quality Model TC, 2005. http://www.oasis-open.org/committees/wsqm/.

107. J. Kim, M. Spraragen, Y. Gil. An intelligent assistant for interactive workflow compo-
sition. In IUI ’04: Proceedings of the 9th International Conference on Intelligent User
Interface, pages 125–131. ACM Press, New York, 2004. ISBN 1-58113-815-6.

108. C. Kirwin. The Oxford Companion to Philosophy, chapter Reasoning, page 748. Oxford
University Press, 1995.

109. S. C. Kleene. Mathematical Logic. Dover, New York, 2002.
110. H. Knublauch, R. W. Fergerson, N. F. Noy, M. A. Musen. The Protégé OWL plugin: An

open development environment for semantic web applications. In Proceedings of the 3rd
International Semantic Web Conference (ISWC), LNCS, vol. 3298. Springer, New York,
2004.

References 217

111. G. Kotonya, I. Sommerville. Requirements Engineering: Processes and Techniques.
Worldwide Series in Computer Science. Wiley, New York, 1998. ISBN 0471972088.

112. D. Krafzig, K. Banke, D. Slama. Enterprise SOA. Service Oriented Architecture—Best
Practices. Prentice-Hall PTR, Englewood Cliffs, December 2004. ISBN 131465759.

113. C. W. Krueger. Software Product-Family Engineering—5th International Workshop, PFE
2003, Siena, Italy, November 4–6, 2003. Revised Papers, volume 3014/2004 of LNCS,
chapter Towards a Taxonomy for Software Product Lines, pages 323–331. Springer,
2004.

114. D. Kuropka. Modelle zur Repräsentation natürlichsprachlicher Dokumente—
Information-Filtering und -Retrieval mit relationalen Datenbanken. Logos Verlag,
Berlin, 2004.

115. B. Laasri, H. Laasri, S. Lander, V. Lesser. A generic model for negotiating agents. In-
ternational Journal on Intelligent and Cooperative Information Systems, 1(2):291–317,
1992.

116. J.-C. Laprie, B. R. anf Carl Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Dependable and Secure Computing, 1,
January–March 2004.

117. A. Lazovik, M. Aiello, M. Papazoglou. Planning and monitoring the execution of web
service requests. In 1st International Conference on Service-oriented Computing (IC-
SOC’03), 2003.

118. F. Leymann. The influence of web services on software: Potentials and tasks. In 34th
Annual Meeting of the German Computer Society. Ulm, Germany, September 20–24,
Springer, Berlin, 2004.

119. F. Leymann, D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall,
Englewood Cliffs, 2000.

120. Z. Liu, M. S. Squillante, J. L. Wolf. On maximizing service-level-agreement prof-
its. In EC ’01: Proceedings of the 3rd ACM Conference on Electronic Com-
merce, pages 213–223. ACM Press, New York, 2001. ISBN 1-58113-387-1.
doi:http://doi.acm.org/10.1145/501158.501185.

121. J. W. Lloyd. Foundations of Logic Programming. Springer, New York, 1993.
122. A. R. Lomuscio, M. Wooldridge, N. R. Jennings. A classification scheme for negotiation

in electronic commerce. Lecture Notes in Computer Science, 1991, 2001.
123. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz. Reference model for

service oriented architecture 1.0, committee specification 1. http://www.oasis-open.org/,
August 2006.

124. C. Malu, C. Fabio, D. Umeshwar, S. Ming-Chien. Intelligent management of slas for
composite web services. Lecture Notes in Computer Science, 2822, 2003.

125. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDemott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara. OWL-S: Seman-
tic Markup for Web Services, December 2003. W3C Member Submission, 22 Novem-
ber 2004. Available from http://www.w3.org/Submission/OWL-S/. http://www.daml.
org/services/owl-s/1.0/owl-s.html.

126. S. McLean, J. Naftel, K. Williams, Microsoft .NET Remoting. Microsoft Press, 2002.
ISBN 0-7356-1778-3.

127. J. Mendling, G. Neumann, M. Nüttgens. Towardsworkflow pattern support of event-
driven process chains (epc). In M. Nüttgens, J. Mendling (editors), XML4BPM 2005, Pro-
ceedings of the 2nd GI Workshop XML4BPM – XML Interchange Formats for Business
Process Management at 11th GI Conference BTW 2005, Karlsruhe, Germany, March
2005, pages 23–38.

http://doi.acm.org/10.1145/501158.501185

218 References

128. H. Meyer. Calculating the semantic conformance of processes. In Proceedings of the
Advances in Semantics for Web Services 2007 Workshop (semantics4ws), 2007.

129. H. Meyer, D. Kuropka, P. Tröger. ASG—techniques of adaptivity. In Proceedings of the
Dagstuhl Seminar on Autonomous and Adaptive Web Services, 2007.

130. P. Mika, D. Oberle, A. Gangemi, M. Sabou. Foundations for service ontologies: Align-
ing owl-s to dolce. In The 13th International World Wide Web Conference Proceedings,
pages 563–572. ACM, New York, May 2004.

131. N. Mitra, Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition)—W3C Recom-
mendation. World Wide Web Consortium (W3C), April 2007.

132. A. Mocan, E. Cimpian. An ontology-based data mediation framework for semantic en-
vironments. International Journal on Semantic Web and Information Systems (IJSWIS),
3(3), 2007.

133. M. Momotko, M. Gajewski, A. Ludwig, R. Kowalczyk, M. Kowalkiewicz, J. Y. Zhang.
Towards adaptive management of qos-aware service compositions—functional architec-
ture. In 4th International Conference on Service Oriented Computing, Chicago, 2006.

134. M. Momotko, M. Gajewski, A. Ludwig, R. Kowalczyk, M. Kowalkiewicz, J. Y. Zhang.
Towards adaptive management of QoS-aware service compositions. International Jour-
nal of Multiagent and Grid Systems, 2007.

135. B. Motik, R. Rosati. A faithful integration of description logics with logic programming.
In Proc. of IJCAI-07, pages 477–482, 2007.

136. P. Murray, E. Golluscio. CORBA and Web Services. Cape Clear Software Whitepaper,
July 2002. http://www.omg.org/news/whitepapers/.

137. K. L. Myers et al. PASSAT: A User-centric Planning Framework. In Proceedings of the
3rd International NASA Workshop on Planning and Scheduling for Space. AAAI, Hous-
ton, TX, USA, 2002.

138. J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos: Representing knowledge
about information systems. ACM Transactions on Information Systems, 8(4):325–362,
1990.

139. Y. V. Natis. Service-oriented architecture scenario. Gartner Research, AV-19-6751:6,
April 2003.

140. J. V. Neumann, O. Morgenstern. The Theory of Games and Economic Behaviour. Prince-
ton University Press, Princeton, 1944.

141. P. Niblett, S. Graham. Events and service-oriented architecture: The OASIS Web Ser-
vices Notification specifications. IBM Systems Journal, October 2005. ISSN 0018-8670.
doi:10.1007/s10208-008-9024-2.

142. K. Nichols, S. Blake, F. Baker, D. Black. Definition of the differentiated services field
(ds field) in the ipv4 and ipv6 headers. RFC 2474 (Proposed Standard), December 1998.
DiffServ specification, Updated by RFCs 3168, 3260. http://www.ietf.org/rfc/rfc2474.
txt.

143. J. Nitzsche, T. van Lessen, D. Karastoyanova, F. Leymann. bpelLight. In Proceedings
of the 5th International Conference on Business Process Management (BPM 2007),
pages 214–229. Springer-Verlag, New York, September 2007.

144. R. L. Nord (editor). Welcome to the Third Software Product Line Conference—SPLC
2004. Springer, New York, 2004.

145. D. Oberle. Semantic Management of Middleware. Springer, New York, 2006.
146. D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, A. Gangemi. Towards on-

tologies for formalizing modularization and communication in large software systems.
Journal of Applied Ontology, 2006.

147. D. Oberle, S. Staab, A. Eberhart. Semantic management of distributed web applications.
IEEE Distributed Systems Online, 7(5), 2006.

References 219

148. Organization for the Advancement of Structured Information Standards (OASIS). In-
troduction to UDDI: Important Features and Functional Concepts, October 2004. http:
//uddi.org/pubs/uddi-tech-wp.pdf.

149. Organization for the Advancement of Structured Information Standards (OASIS). Web
Services Business Process Execution Language (WS-BPEL), 2004.

150. Organization for the Advancement of Structured Information Standards (OASIS). Web
Services Business Process Execution Language Version 2.0 Primer, 2007. http://docs.
oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf.

151. M. P. Papazoglou, D. Georgakopoulos. Introduction. Commun. ACM, 46(10):24–28,
2003. ISSN 0001-0782.

152. S. Parsons, C. Sierra, N. Jennings. Agents that reason and negotiate by arguing. Journal
of Logic and Computation, 8(3):261–292, 1998.

153. K. Petersen, J. M. Zaha, A. Metzger. Variability-driven selection of services for service
compositions. In WESOA 2007, 2007.

154. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso. Planning and monitoring Web
service composition. Lecture Notes in Computer Science, 3192:106–115, Jan 2004.

155. K. Pohl. Requirements Engineering. Grundlagen, Prinzipien, Techniken. Dpunkt Verlag,
2007.

156. K. Pohl, G. Böckle, F. J. van der Linden. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, New York, 2005. ISBN 3540243720.

157. D. G. Pruitt. Negotiation Behaviour. Academic Press, New York, 1981.
158. H. Raiffa. The Art and Science of Negotiation. Harvard University Press, Cambridge,

1982.
159. J. Recker, M. Indulska, P. Green. Extending representational analysis: Bpmn user and

developer perspectives. In Proceedings of the 5th International Conference on Business
Process Management (BPM 2007), pages 384–399. Springer-Verlag, New York, Septem-
ber 2007.

160. J. Richter. Applied Microsoft .NET Framework Programming. Microsoft Press, 2002.
ISBN 0-7356-1422-9.

161. C. Ringelstein, T. Franz, S. Staab. The process of semantic annotation of web services.
In J. Cardoso (editor), Semantic Web Services—Theory, Tools, and Applications. Idea
Publishing Group, USA, 2007.

162. T. Rinke, T. Weyer. Defining reference models for modelling qualities: How requirements
engineering techniques can help. In Proceedings of the 13th International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ 2007),
pages 335–340, 2007.

163. D. Roman, U. Keller, H. Lausen, R. L. Jos de Bruijn, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, D. Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–106,
2005.

164. D. Roman, H. Lausen, U. Keller. Web Service Modeling Ontology (WSMO), 2005.
WSMO Working Draft D2v1.2. http://www.wsmo.org/TR/d2/v1.2/.

165. D. Roman et al. Requirements analysis on the asg service specification language. Deliv-
erable d1.1-1, DERI Innsbruck, 2005.

166. D. Rossi, E. Turrini. Analyzing the impact of components replication in high available
J2EE clusters. In ICAS/ICNS, page 56, 2005.

167. T. W. Sandholm. Multiagent Systems—Distributed Rational Decision Making. MIT
Press, Cambridge, 1999.

168. J. Schaffner, H. Meyer, C. Tosun. A Semi-automated orchestration tool for service-based
business processes. In Proceedings of the 2nd International Workshop on Engineering
Service-Oriented Applications: Design and Composition, Dec 2006.

220 References

169. J. Schaffner, H. Meyer, M. Weske. A formal model for mixed initiative service composi-
tion. In Proceedings of the IEEE International Conference on Services Computing (SCC
2007), pages 443–450, 2007.

170. A.-W. Scheer. ARIS—Vom Geschäftsprozeß zum Anwendungssystem. Springer, fourth
edition, 2002.

171. A.-W. Scheer, O. Thomas, O. Adam. Process modelling using event-driven process
chains. In M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede (editors), Process-
Aware Information Systems, pages 119–146. Wiley, Hoboken, 2005.

172. K. Schmid. A comprehensive product line scoping approach and its validation. In
Proceedings of the 22rd International Conference on Software Engineering (ICSE),
pages 593–603. ACM, New York, 2002.

173. M. Schmidt-Schauß, G. Smolka. Subsumption in KL-ONE is undecidable. In R. Brach-
man (editor), Principles of Knowledge, Representation and Reasoning: Proceedings
of the First International Conference of Knowledge Representation and Reasoning,
pages 421–431. Morgan Kaufmann, San Mateo, 1991.

174. W. Shen, Y. Li, H. H. Genniwa, C. Wang. Adaptive negotiation for agent-based grid
computing. Journal of the American Statistical Association, 97(457):210–214, 2002.

175. C. Sierra, N. Jennings, P. Noriega, S. Parsons. A framework for argumentation-based
negotiation. In Proc. 4th International Workshop on Agent Theories, Architectures and
Languages. Rode Island, USA, 1997.

176. E. Sirin, B. Parsia, J. Hendler. Filtering and selecting semantic Web services with inter-
active composition techniques. IEEE Intelligent Systems, 19:42–49, 2004.

177. E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau. HTN planning for Web service composi-
tion using SHOP2. Journal of Web Semantics, 1(4):377–396, 2004.

178. H. Smith, P. Fingar. Business Process Management: The Third Wave. Meghan-Kiffer
Press, Tampa, FL, USA, first edition, 2003.

179. P. G. Soares. On remote procedure call. In Proceedings of the 1992 Conference of the
Centre for Advanced Studies on Collaborative Research (CASCON), pages 215–267.
IBM Press, 1992.

180. R. M. Soley, C. M. Stone. Object Management Architecture Guide Rev. 3.0, June 1995.
http://www.omg.org/cgi-bin/doc?ab/97-05-05.

181. J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co., Pacific Grove, 2000.

182. S. Stein, K. Barchewitz, M. El Kharbili. Enabling business experts to discover web ser-
vices for business process automation. In C. Pautasso, T. Gschwind (editors), 2nd Work-
shop on Emerging Web Services Technology, pages 19–35. Halle, Germany, November
2007.

183. S. Stein, K. Ivanov. Epk nach bpel transformation als voraussetzung für praktische um-
setzung einer soa. In W.-G. Bleek, J. Raasch, H. Züllighoven (editors), GI Software
Engineering 2007, volume 105 of Lecture Notes in Informatics (LNI), pages 75–80.
Gesellschaft für Informatik (GI), Hamburg, Germany, March 2007.

184. M.-A. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, N. Noy. Jambalaya:
Interactive visualization to enhance ontology authoring and knowledge acquisition in
Protégé. In Proceedings of the Workshop on Interactive Tools for Knowledge Capture
(K-CAP), 2001.

185. Sun Microsystems. Java API for XML-based RPC 1.1. JSR-101, October 2003.
186. C. Szyperski. Component Software—Beyond Object-Oriented Programming. Addison-

Wesley/ACM Press, 1999. ISBN 0-201-17888-5.

References 221

187. A. Tate. Generating project networks. In Proceedings of the Fifth Joint Conference on
Artificial Intelligence, Cambridge, MA, USA, pages 888–893. Morgan Kaufmann, San
Mateo, 1977.

188. C. P. Team. Capability maturity model integration (cmmi) version 1.1, cmu/sei-2002-tr-
029. Technical report, Carnegie Mellon Software Engineering Institute, 2002.

189. R. Ten-Hove, P. Walker. Java Business Integration (JBI). JSR 208, August 2005.
190. J. B. Theresa Lehner. Adaptive service grid deliverable d6 iii-7: Asg application and

service engineering approach, 2006.
191. M. V. Thomas Stahl. Modellgetriebene Softwareentwicklung, Techniken, Engineering,

Management. Dpunkt Verlag, 2004.
192. T. F. TMF. Sla management handbook, volume 2, concepts and principles—gb917 v2.5,

r2.5, 2005. http://www.tmforum.org/browse.aspx?catID=1722&linkID=30755.
193. P. Tröger. Dynamische Ressourcenverwaltung für dienstbasierte Software-Systeme. Ph.D.

thesis, Universität Potsdam, November 2007.
194. P. Tröger, H. Meyer, I. Melzer, M. Flehmig. Dynamic provisioning and monitoring of

stateful services. In Proceedings of the 3rd International Conference on Web Information
Systems and Technologies (WEBIST 2007), pages 434–438, March 2007. ISBN 978-972-
8865-77-1.

195. W. T. Tsai, J. Gao, X. Wei, Y. Chen. Testability of software in service-oriented architec-
ture. In Proceedings of the 30th Annual International Computer Software and Applica-
tions Conference (COMPSAC 2006), pages 163–170, 2006.

196. R. van Buuren, S. Hoppenbrouwers, H. Jonkers, M. Lankhorst, G. V. van Zanten. Archi-
tecture language reference manual. Technical report TI/RS/2003/030, Telematica Insti-
tute, April 2006. ArchiMate Deliverable 2.2.2b v4.1.

197. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Barros. Workflow patterns. Dis-
tributed and Parallel Databases, 14(3):5–51, 2003.

198. W. M. van der Aalst. Verification of workflow nets. In ICATPN ’97: Proceedings of the
18th International Conference on Application and Theory of Petri Nets, pages 407–426.
Springer-Verlag, London, 1997. ISBN 3-540-63139-9.

199. A. van Gelder, K. Ross, J. S. Schlipf. The well-founded semantics for general logic pro-
grams. Journal of the ACM, 38(3):620–650, 1991.

200. J. van Gurp, J. Bosch, M. Svahnberg. On the notion of variability in software prod-
uct lines. In IEEE/IFIP Working Conference on Software Architecture (WICSA 2001),
pages 45–54, 2001.

201. L. von Bertalanffy. General System Theory. Braziller (George) Inc., New York, 1976.
202. C. Walls, R. Breidenbach. Spring in Action. Manning Publications, second edition, 2007.

ISBN 1933988134.
203. S. Weibel, J. Kunze, C. Lagoze, M. Wolf. Dublin core metadata for resource discovery.

RFC 2413, IETF, September 1998.
204. M. Weske. Business Process Management: Concepts, Languages, Architectures.

Springer, New York, April 2007.
205. F. Wolff, D. Oberle, S. Lamparter, S. Staab. Economic reflections on managing web ser-

vices using semantics. In EMISA-2005—Enterprise Modelling and Information Systems
Architectures, October 24–25, 2005.

206. W. A. Woods. What’s in a link: Foundations for semantic networks. In D. Bobrow,
A. Collins (editors), Representation and Understanding. Studies in Cognitive Science,
pages 35–82. Academic Press, New York, 1975.

207. M. Wooldridge. Intelligent Agents: An Introduction to Multiagent Systems. Wiley, New
York, 2002.

222 References

208. World Wide Web Consortium. XML Schema Part 0: Primer Second Edition—W3C Rec-
ommendation, October 2004. http://www.w3.org/TR/xmlschema-0.

209. World Wide Web Consortium (W3C). OWL Web Ontology Language Semantics and Ab-
stract Syntax—W3C Recommendation 10 February 2004, February 2004. W3C Recom-
mendation 10 February 2004. http://www.w3.org/TR/owl-semantics/.

210. World Wide Web Consortium (W3C). RDF Primer—W3C Recommendation 10 February
2004, February 2004. W3C Recommendation 10 February 2004. http://www.w3.org/TR/
REC-rdf-syntax/.

211. K. Zachos, N. A. M. Maiden, X. Zhu, S. Jones. Discovering web services to specify
more complete system requirements. In Proceedings of the 19th International Confer-
ence on Advanced Information Systems Engineering (CAISE), pages 142–157. Springer,
New York, 2007.

212. L. Zeng, B. Benatallah, H. Lei, A. N. D. Flaxer, H. Chang. Flexible composition of
enterprise web services. Electronic Markets—Web Services, 13:141–152, 2003.

213. L. Zeng, B. Benatallah, H. Lei, A. H. H. Ngu, D. Flaxer, H. Chang. Flexible composition
of enterprise Web services. Electronic Markets, 13(2), 2003.

214. L. Zeng, B. Benatallah, H. Lei, A. H. H. Ngu, D. Flaxer, H. Chang. Flexible composition
of enterprise Web services. Electronic Markets—Web Services, 13, 2003.

215. H. Zhu, A framework for service-oriented testing of web services. In Proceedings of the
30th Annual International Computer Software and Applications Conference (COMPSAC
2006), pages 145–150, 2006.

Index

A-Box 22
accessibility 151
activity instance behavioural model 160
agreement 20
application analysis 57
application design 57
application engineering 57
application implementation 57
application server 169
ASG 184, 203–207
assembly 172, 173
assertional box 22
assumption 60
atomic activities 77
atomic service 7, 8
atomic services 73
atoms 28
availability 8, 151, 164

B2B 12, 13
B2C 12
BCL 173
behavioural model 158
belief states 104
BPEL 130, 133–135, 138, 139, 141, 142,

145
BPEL-SPE 78
BPEL4Chor 78
BPEL4People 78
BPELJ 78
BPMN 86, 130
business requirement 93
business tier 170

capability 40
CBSD 56
CCM 171
CFP 120, 121
choreography 40
CIM 130, 131
CLI 173
CLR 172
CLS 173
CNP 121
COM 172
component architectures 166
component model 164
composed service 7, 8, 73, 176
composite 171
composite service 7
composition enactment 146
composition monitoring 146
composition profiling 146
Concepts 39
conceptualisation 20, 31
confidentiality 8
container 165
container concept 169
control flow 95, 145
conversational interface 171
CORBA 166–168, 171
correct service 8
CTS 173

data access services 171
data contract 174
data flow 95, 145

224 Index

data model 95
data object 171
DCE 172
DCOM 172
decision making model 117
Deming cycle 128
description logic 29
disconnected data graph 171
discriminator 98
document-style 179
document/literal 179, 183
document/wrapped 179
domain analysis 31, 57
domain design 57
domain engineering 57
domain implementation 57
DSL 56–58

ECMA 173
effect 60
EJB 170
elements of composition 95
enabling states 158
endpoints 174
enforced hill-climbing 102
EPC 130, 131, 133, 135, 136, 138
error 8
error detection 9
error handling 9
ESB 165, 178
exclusive choice 98, 99, 102
external agreements 122
external service 122

F-Logic 27
failure 8
fault 8
fault contract 174
fault forecasting 9
fault handling 9
fault prevention 9
fault removal 9
fault tolerance 9
FIPA 120, 121

graphplan 112, 113
Grid Computing 182, 184

hosting environment 174
Hub-and-Spoke 55

ICNP 121
IL 173
implementation-level 152
incorrect service 8
inheritance 102
integrity 8
intermediaries 178
internal agreements 122
internal service 122
interoperability 164
IRI 33, 41

JAR 173
Java EE 65, 168–170, 174
JMS 178

literal encoding 179
logic programming 29

maintainability 8
maximum throughput 151
MDA 58, 59, 65, 131
MDSD 57, 58
mediator 40
mediators 151
message broker 164
MOF 58
molecules 28
MOM 164, 165
Mono project 173
MTOM 181
multiple choice 98, 99, 102
multiple merge 98

negotiation strategy 117
non-functional properties 39, 40
notification 177

OASIS 182
OMG 58, 65, 167
one-way 177
ontology 19
ontology mediators 39
operational states 158
orchestration 40
OWL 23, 24, 29–32
OWL DL 24, 29
OWL Full 24
OWL Lite 23, 24, 29

Index 225

parallel control flow 103
parallel split 98, 99
performability 8
PIM 58, 59, 61, 65, 130, 131
population phase 31
portability 164
postcondition 86
precondition 86
process designer 74
process engineer 74
process instance behavioural model 159
proxy service meta model 60
proxy services 59
PSM 58, 59, 65, 130, 131, 133

QoS 124–127, 145–149, 151–153, 157
quality-of-operation 150–152
quality-of-result 150, 151

RDF 28, 31
re-binding 158
re-planning 158
relations 40
relaxed graphplan 102, 112
reliability 8, 164
remoting architectures 166
request-response 177
response time 151
RIF 26
RPC 175, 178
rpc-style 179
RPC/encoded 179, 183
runtime host 173

safety 8
SCA 170, 171, 174
SDO 171
security 8
semantic business process management 127
semantic grounding specification 70
semantic service 7
semantic service description 204
semantic service request 204
semantic service specification 49, 60, 61, 70
sequence 98
service 5, 6
service assembling 170
service based application 7
service broker 5, 6

service class 174
service composition 7, 73
service consumer 5
service contract 174
service enabling 55
service infrastructure 151, 152, 204
service interface 6
service landscape 55, 93, 115
service matchmaking 49
service monitoring 149
service profile 149, 153
service profiling 149
service provider 5, 6
service requester 5, 6
service specification 6
service-level objective 10
service-level specification 10
simple merge 98, 99
SISi 135, 136, 139, 141, 142
SLA 9, 10, 121–125, 151–153, 156, 158
SOA 5, 7–10, 14, 115, 116, 163, 164, 171,

172, 175, 176, 180, 182, 184
SOAP 170, 175, 176, 178, 180, 183
SOAP encoding 179
SOAP With Attachments (SWA) Profile 181
SOC 6, 7
solicit-response 177
SPL 57
structured activities 77
successability 151
SWS 38, 39, 45
synchronization 98, 99
synchronizing merge 98, 99
synthetic indicator 156
system recovery 9

T-Box 22
terminological box 22
TP 164

UDDI 180, 181
ultimate receiver 178
UML 58
undecidable description logics language 23
URI 39

value proposition 21

W3C 176, 178
WCF 174, 175

226 Index

Web services 163, 175
web tier 169
WS-Addressing 181, 183
WS-Agreement 145
WS-BPEL 77, 78, 183
WS-Coordination 182
WS-HumanTask 78
WS-I 183
WS-MetadataExchange 183
WS-Notification 181, 183
WS-Policy 181, 183
Ws-ResourceLifetime 182
WS-ResourceProperties 182
WS-Security 178, 181, 183
WS-Trust 183
WSDL 46, 47, 60–62, 65, 68, 70, 94, 133,

135, 137, 139, 175–178, 180–183, 189

WSFL 77
WSLA 151
WSML 28, 29, 32, 33, 41, 42, 44
WSML-Core 29
WSML-DL 29
WSML-Flight 29
WSML-Full 30
WSML-Rule 30
WSMO 29, 32–34, 38–41
WSMX 32, 39
WSRF 183

XMI 65
XML 39, 59, 165, 168, 175, 176
XML schema 176, 181
XPDL 134, 139

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

